【题目】已知:如图,△ABC中,点O是AC上的一动点,过点O作直线MN∥AB,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACG的平分线于点F连接AE、AF.
(1)求证:∠ECF=90°;
(2)当点O运动到何处时,四边形AECF是矩形?请说明理由;
(3)在(2)的条件下,△ABC应该满足条件:______________,就能使矩形AECF变为正方形。(直接添加条件,无需证明)
【答案】(1)详见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形,理由详见解析;(3)∠ACB为直角的直角三角形.
【解析】
(1)已知CE平分∠BCO,CF平分∠GCO,根据角平分线的定义可得∠OCE=∠BCE,∠OCF=∠GCF,由平角的定义即可证得结论;(2)当点O运动到AC的中点时,四边形AECF是矩形,根据平行线的性质及角平分线的定义易证∠OCE=∠OEC,∠OCF=∠OFC,由等腰三角形的判定可得EO=CO,FO=CO,即可得OE=OF;当点O运动到AC的中点时,AO=CO,根据对角线互相平分的四边形为平行四边形即可得四边形AECF是平行四边形,结合(1),根据有一个角为直角的的平行四边形为矩形即可证得四边形AECF是矩形;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,所以四边形AECF是正方形.
(1)证明:∵CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠ECF= ×180°=90°;
(2)当点O运动到AC的中点时,四边形AECF是矩形.理由如下:
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又∵CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴OE=OF;
又∵当点O运动到AC的中点时,AO=CO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴四边形AECF是矩形;
(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
故答案为:∠ACB为直角的直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,连结AE、DE、DC,且AE=CD.
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,等腰直角中,,,现将该三角形放置在平面直角坐标系中,点坐标为,点坐标为.
(1)过点作轴,求的长及点的坐标;
(2)连接,若为坐标平面内异于点的点,且以、、为顶点的三角形与全等,请直接写出满足条件的点的坐标;
(3)已知,试探究在轴上是否存在点,使是以为腰的等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,则AB的长是( )
A. B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB分别与两坐标轴交于点A(4,0).B(0,8),点C的坐标为(2,0).
(1)求直线AB的解析式;
(2)在线段AB上有一动点P.
①过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为6,求点P的坐标.
②连结CP,是否存在点P,使与相似,若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:
①抛物线y=ax2(a≠0)的图象的顶点一定是原点;
②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;
③AB的长度可以等于5;
④△OAB有可能成为等边三角形;
⑤当-3<x<2时,ax2+kx<b,
其中正确的结论是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图, 在中, ,,,P是边BC上的一动点,过点P作PE⊥AB,垂足为E,延长PE至点Q,使PQ=PC, 联结交边AB于点.
(1)求AD的长;
(2)设,的面积为y, 求y关于x的函数解析式,并写出定义域;
(3)过点C作, 垂足为F, 联结PF、QF, 试探索当点P在边BC的什么位置时,为等边三角形?请指出点P的位置并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com