分析 设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=$\frac{1}{2}$(AC+BC-AB),由此可求出r的长.
解答 解:如图:![]()
在Rt△ABC,∠C=90°,AC=5,BC=12,
根据勾股定理AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=13,
四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°,
∴四边形OECF是正方形,
由切线长定理,得:AD=AE,BD=BF,CE=CF,
∴CE=CF=$\frac{1}{2}$(AC+BC-AB),
即:r=$\frac{1}{2}$(5+12-13)=2.
故答案为:2.
点评 本题主要考查了直角三角形内切圆的性质及半径的求法.根据已知得出CE=CF=$\frac{1}{2}$(AC+BC-AB)是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com