精英家教网 > 初中数学 > 题目详情

已知:如图,在△OAP中,OA=6,sin∠POA=数学公式,cot∠PAO=数学公式,二次函数的图象经过O、A、P三点.
(1)求点P的坐标;
(2)求二次函数的解析式;
(3)在x轴的下方,且在二次函数图象的对称轴上求一点M,使得△MOP与△AOP的面积相等.

解:(1)过点P作PH⊥OA,垂足为点H.
设点P的坐标为(x,y),则OH=x,PH=y.
,∴tan.∴.∴
∵cot,∴.∴
∵OA=OH+AH=6,∴
∴y=3.∴x=4.
∴点P的坐标为(4,3).
(2)设所求二次函数的解析式为y=ax2+bx+c.
由题意,得
解得
∴所求二次函数的解析式为
(3)设点M的坐标为(3,y),二次函数的对称轴与OP相交于点C.
由题意,得 点C的坐标为(3,).
∴S△MOP=S△COM+S△PCM=

而S△MOP=S△AOP,S△AOP=
.∴
∴点M的坐标为(3,).
另解:设二次函数的对称轴与x轴交于点B,连接MA.
∵△MOP与△AOP的面积相等,且OP是公共边,
∴点M到OP与点A到OP的距离相等.
∴AM∥OP.
∴∠MAB=∠POA.
∴tan∠MAB=tan
∵AB=3,∴

∴点M的坐标为(3,).
分析:(1)过点P作PH⊥OA,垂足为点H,将原图分为两个直角三角形,利用锐角三角函数的定义,列方程求解;
(2)设所求二次函数的解析式为y=ax2+bx+c,由O、A、P三点坐标代入,列方程求a、b、c的值,确定抛物线解析式;
(3)根据二次函数解析式可知,对称轴为x=3,可设点M的坐标为(3,y),二次函数的对称轴与OP相交于点C,由P点坐标可求直线OP解析式,把x=3代入可求C点坐标,由S△MOP=S△COM+S△PCM,S△MOP=S△AOP,列方程求M点纵坐标y即可.
点评:本题考查了二次函数的综合运用.关键是利用直角三角形的边角关系求点P的坐标,根据二次函数的图象经过O、A、P三点,求抛物线解析式,根据三角形面积相等,列方程求M点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在半径为4的⊙O中,圆心角∠AOB=90°,以半径OA、OB的中点C、F为顶点作矩形CDEF,顶点D、E在⊙O的劣弧
AB
上,OM⊥DE于点M.试求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙川县二模)已知:如图,在平面直角坐标系xOy中,直线y=kx+b(k>0,b>0)与x轴、y轴分别交于点A、B,与双曲线y=
m
x
相交于C、D两点,且点D的坐标为(1,5),C点的坐标为(p,q),作CE⊥x轴于E,作DF⊥y轴于F,连接EF.
(1)请直接写出m的值:
5
5

(2)判断△EFC的面积和△EFD的面积是否相等,并说明理由;
(3)若AB=
2
3
CD时,则AB与OA有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湛江模拟)已知,如图,在直角梯形COAB中,CB∥OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.
(1)求过点O、B、A三点的抛物线的解析式;
(2)求AB的长;若动点P在从A到B的移动过程中,设△APD的面积为S,写出S与t的函数关系式,并指出自变量t的取值范围;
(3)动点P从A出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•上海模拟)已知:如图,在以点O为圆心的两个同心圆中,大圆的半径OA与小圆相交于点B,AC与小圆相切于点C,OC的延长线与大圆相交于点D,AC与BD相交于点E.
求证:(1)BD是小圆的切线;
(2)CE:AE=OC:OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.

查看答案和解析>>

同步练习册答案