精英家教网 > 初中数学 > 题目详情
9.如图,在正方形ABCD中,△APBC是等边三角形,连接PD,DB,则$\frac{{S}_{△BPD}}{{S}_{正方形ABCD}}$=$\frac{\sqrt{3}-1}{4}$.

分析 根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积-△BCD的面积,列式进行计算求得答案即可.

解答 解:如图,

过P作PE⊥CD,PF⊥BC,
设正方形ABCD的边长是啊,
∵△BPC为正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=a,
∴∠PCE=30°
∴PF=PB•sin60°=$\frac{\sqrt{3}}{2}$a,PE=PC•sin30°=$\frac{1}{2}$a,
∴S△BPD=S四边形PBCD-S△BCD=S△PBC+S△PDC-S△BCD=$\frac{1}{2}$×a×$\frac{\sqrt{3}}{2}$a+$\frac{1}{2}$×$\frac{1}{2}$a×a-$\frac{1}{2}$×a×a=$\frac{\sqrt{3}-1}{4}$a2
∴$\frac{{S}_{△BPD}}{{S}_{正方形ABCD}}$=$\frac{\sqrt{3}-1}{4}$.
故答案为:$\frac{\sqrt{3}-1}{4}$.

点评 本题考查的正方形的性质以及等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PE及PF的长,再根据三角形的面积公式得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.当x取什么值时,代数式$\frac{2x+3}{2}$的值与1-$\frac{x-1}{3}$的值相等?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知等腰△ABC,建立适当的直角坐标系后,其三个顶点的坐标分别为A(m,0).B(m+4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是(  )
A.AC=BC≠ABB.AB=AC≠BCC.AB=BC≠ACD.AB=AC=BC

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A的坐标是(a,b)
则经过第2017次变换后所得的A点坐标是(a,-b).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.定义:在平面直角坐标系中,点A、B为函数L图象上的任意两点,点A坐标为(x1,y1),点B坐标为(x2,y2),把式子$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$称为函数L从x1到x2的平均变化率;对于函数K:y=2x2-3x+1图象上有两点A(x1,y1)和B(x2,y2),当x1=1,x2-x1=$\frac{1}{3}$时,函数K从x1到x2的平均变化率是$\frac{5}{3}$;当x1=1,x2-x1=$\frac{1}{n}$(n为正整数)时,函数K从x1到x2的平均变化率是$\frac{n+2}{n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若实数a、b满足a+b=-2,a2b+ab2=-10,则ab的值是5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
如:(2+i)+(3-4i)=(2+3)+(1-4)i=5-3i,
(5+i)(3-4i)=5×3+5×(-4i)+i×3+i×(-4i)=15-20i+3i-4i2=19-17i
请根据以上内容的理解,利用以前学习的有关知识将(1+2i)(1-3i)化简结果为7-i.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知一个三角形各边的比为2:3:4,联结各边中点所得的三角形的周长为18cm,那么原三角形最短的边的长为8cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图所示,Rt△ABC中,∠C=90°,∠A、∠B的平分线AD、BE交于F,求∠AFB的度数.

查看答案和解析>>

同步练习册答案