精英家教网 > 初中数学 > 题目详情

【题目】张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.

(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;
(2)求出a的值;
(3)求张师傅途中加油多少升?

【答案】
(1)解:设加油前函数解析式为y=kt+b(k≠0),

把(0,28)和(1,20)代入,

解得:

故张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式为:y=﹣8t+28


(2)解:当y=0时,﹣8t+28=0,

解得:t=

故a= =3


(3)解:设途中加油x升,则28+x﹣34=8×

解得:x=46,

答:张师傅途中加油46升


【解析】(1)由图中所给条件和待定系数法易得加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式。
(2)设若没有加油,则用完油时,Y=0,求得此时t=,又知加油时,车载电脑显示还能行驶50千米,则距实际时间还差小时,最后易得a=3.
(3)由5小时后还有34升油易得方程28+x﹣34=8×5,求得加了46升油。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,OM⊥AB.

(1)若∠1=∠2,求∠NOD.

(2)若∠1=∠BOC,求∠AOC与∠MOD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),,按此方式依次操作,则第6个正六边形的边长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,李老师出示了如下框中的题目.

在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.

小敏与同桌小聪讨论后,进行了如下解答:

(1)特殊情况,探索结论

当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:

AE DB(填“>”,“<”或“=”).

图1 2

(2)特例启发,解答题目

解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).

理由如下:如图2,过点E作EFBC,交AC于点F.

(请你完成以下解答过程)

(3)拓展结论,设计新题

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .

(1) 如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)

(2) 如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;

(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).

(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.

查看答案和解析>>

同步练习册答案