精英家教网 > 初中数学 > 题目详情

【题目】边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),,按此方式依次操作,则第6个正六边形的边长为( )

A. B. C. D.

【答案】A

【解析】

连接ADDBDF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过FFZ⊥GI,过EEN⊥GIN,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.

连接ADDFDB

六边形ABCDEF是正六边形,

∴∠ABC=∠BAF=∠AFEAB=AF∠E=∠C=120°EF=DE=BC=CD

∴∠EFD=∠EDF=∠CBD=∠BDC=30°

∵∠AFE=∠ABC=120°

∴∠AFD=∠ABD=90°

Rt△ABDRtAFD

∴Rt△ABD≌Rt△AFDHL),

∴∠BAD=∠FAD=×120°=60°

∴∠FAD+∠AFE=60°+120°=180°

∴AD∥EF

∵GI分别为AFDE中点,

∴GI∥EF∥AD

∴∠FGI=∠FAD=60°

六边形ABCDEF是正六边形,△QKM是等边三角形,

∴∠EDM=60°=∠M

∴ED=EM

同理AF=QF

AF=QF=EF=EM

等边三角形QKM的边长是a

第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的

FFZ⊥GIZ,过EEN⊥GIN

FZ∥EN

∵EF∥GI

四边形FZNE是平行四边形,

∴EF=ZN=a

∵GF=AF=×a=a∠FGI=60°(已证),

∴∠GFZ=30°

∴GZ=GF=a

同理IN=a

∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a

同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a

同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a

第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a

第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a

即第六个正六边形的边长是×a

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

销售单价(元)

x

销售量y(件)

销售玩具获得利润w(元)


(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1正方形ABCD中,EFGH分别是ABBCCDDA上的点,3AE=EB,有一只蚂蚁从E点出发,经过FGH,最后回点E点,则蚂蚁所走的最小路程是(

A.2B.4C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次统计共抽查了  名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为  

(2)将条形统计图补充完整;

(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

我们知道:一条线段有两个端点,线段和线段表示同一条线段. 若在直线上取了三个不同的点,则以它们为端点的线段共有 ;若取了四个不同的点,则共有线段 ;…;依此类推,取了个不同的点,共有线段条.(用含的代数式表示)

类比探究:

以一个锐角的顶点为端点向这个角的内部引射线.

(1)若引出两条射线,则所得图形中共有 个锐角;

(2)若引出条射线,则所得图形中共有 个锐角.(用含的代数式表示)

拓展应用:

一条铁路上共有8个火车站,若一列火车往返过程中必须停靠每个车站,则铁路局需为这条线路准备多少种车票?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1cm的⊙O中,AB为⊙O内接正九边形的一边,点C、D分别在优弧与劣弧上.则下列结论:①S扇形AOB= πcm2;② ;③∠ACB=20°;④∠ADB=140°.错误的有( )

A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.

(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;
(2)求出a的值;
(3)求张师傅途中加油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程队修建一条长1200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.

1)求这个工程队原计划每天修道路多少米?

2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?

查看答案和解析>>

同步练习册答案