【题目】如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):_______.
【答案】①③或②③
【解析】
已知①③条件,先证明△BEO≌△CDO再证明∠ABC=∠ACB最后得到△ABC是等腰三角形;已知②③条件可证明△BEO≌△CDO,再证明△ABC是等腰三角形.
①③或②③.
由①③证明△ABC是等腰三角形.
在△BEO和△CDO中,
∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD.
∴△BEO≌△CDO,
∴BO=CO,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
∴AB=AC.
因此△ABC是等腰三角形.
由②③证明△ABC是等腰三角形.
在△BEO和△CDO中,
∵∠BEO=∠CDO,BE=CD,∠EOB=∠DOC,
∴△BEO≌△CDO,
∴BO=CO,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,AB=AC.
∴△ABC是等腰三角形.
故答案为:①③或②③.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC , AD平分∠BAC , DE∥AC交AB于E , 则S△EBD:S△ABC=( )
A.1:2
B.1:4
C.1:3
D.2:3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知△ABC是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN=FM,连接DM、MN、DN.
(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断△DMN是怎样的特殊三角形(不要求证明);
(2)请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;
(3)请借助图③解答:当点M在射线FC上(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?画出图形,不要求证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0)和(﹣3.5,0),顶点为(﹣1,4),根据图象直接写出下列答案.
(1)方程ax2+bx+c=0的两个根;
(2)不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k有两个不相等实根,则k的取值范围是什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CN是等边△的外角内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)依题意补全图形;
(2)若,求的大小(用含的式子表示);
(3)用等式表示线段, 与之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S. 求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论: ①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中结论正确的是 . (填正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.
(1)△DCF可以看做是△BCE绕点C旋转某个角度得到的吗?说明理由.
(2)若∠CEB=60°,求∠EFD的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com