【题目】如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.
(1)求抛物线的解析式;
(2)若C为AB中点,求PC的长;
(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.
【答案】
(1)
解:∵A(a,8)是抛物线和直线的交点,
∴A点在直线上,
∴8=2a+4,解得a=2,
∴A点坐标为(2,8),
又A点在抛物线上,
∴8=22+2b,解得b=2,
∴抛物线解析式为y=x2+2x
(2)
解:联立抛物线和直线解析式可得 ,解得 , ,
∴B点坐标为(﹣2,0),
如图,过A作AQ⊥x轴,交x轴于点Q,
则AQ=8,OQ=OB=2,即O为BQ的中点,
当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,
∴OC= AQ=4,
∴C点坐标为(0,4),
又PC∥x轴,
∴P点纵坐标为4,
∵P点在抛物线线上,
∴4=x2+2x,解得x=﹣1﹣ 或x= ﹣1,
∵P点在A、B之间的抛物线上,
∴x=﹣1﹣ 不合题意,舍去,
∴P点坐标为( ﹣1,4),
∴PC= ﹣1﹣0= ﹣1;
(3)
解:∵D(m,n),且四边形PCDE为矩形,
∴C点横坐标为m,E点纵坐标为n,
∵C、E都在直线y=2x+4上,
∴C(m,2m+4),E( ,n),
∵PC∥x轴,
∴P点纵坐标为2m+4,
∵P点在抛物线上,
∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x= ﹣1或x=﹣ ﹣1(舍去),
∴P点坐标为( ﹣1,2m+4),
∴DE= ﹣m,CP= ﹣1﹣m,
∵四边形PCDE为矩形,
∴DE=CP,即 ﹣m= ﹣1﹣m,
整理可得n2﹣4n﹣8m﹣16=0,
即m、n之间的关系式为n2﹣4n﹣8m﹣16=0
【解析】(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC= AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.本题为二次函数的综合应用,涉及知识点有图象的交点、待定系数法、三角形中位线定理、矩形的性质等.在(1)中注意交点坐标的应用,在(2)中求出C点坐标是解题的关键,在(3)中用m、n表示出P点的坐标是解题的关键.本题知识点较多,计算量较大,难度适中.
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2
科目:初中数学 来源: 题型:
【题目】如图,已知点A的坐标为(﹣2,0),直线y=﹣ x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.
(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B在线段EF上,点M、N分别是线段EA、BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长是( )
A. 10 cm B. 11 cm C. 12 cm D. 13 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现从A,B两市场向甲、乙两地运送水果,A,B两个水果市场分别有水果35和15吨,其中甲地需要水果20吨,乙地需要水果30吨,从A到甲地运费50元/吨,到乙地30元/吨;从B到甲地运费60元/吨,到乙地45元/吨
(1)设A市场向甲地运送水果x吨,请完成表:
运往甲地(单位:吨) | 运往乙地(单位:吨) | |
A市场 | x |
|
B市场 |
|
|
(2)设总运费为W元,请写出W与x的函数关系式,写明x的取值范围;
(3)怎样调运水果才能使运费最少?运费最少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】仔细观察下面的日历,回答下列问题:
(1)任意用正方形框圈出四个日期,如果正方形框中的第一个数(左上角的数)为,用代数式表示正方形框中的四个数的和;
(2)若将正方形框上下左右移动,可框住另外的四个数,这四个数的和能等于吗?如果能,依次写出这四个数;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC中,∠B <∠C,AD,AE分别是△ABC的高和角平分线。
(1)若∠B=30°,∠C=50°,试确定∠DAE的度数;
(2)试写出∠DAE,∠B,∠C的数量关系,并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是等边三角形,D是BC边上的一个动点点D不与B,C重合是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.
如图1,求证:≌;
请判断图1中四边形BCEF的形状,并说明理由;
若D点在BC边的延长线上,如图2,其它条件不变,请问中结论还成立吗?如果成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com