精英家教网 > 初中数学 > 题目详情

【题目】已知:在平面直角坐标系中,抛物线 交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.

(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.

【答案】
(1)

解:对称轴为x=﹣ =﹣2,

解得b=﹣1,

所以,抛物线的解析式为y=﹣ x2﹣x+3,

∵y=﹣ x2﹣x+3=﹣ (x+2)2+4,

∴顶点D的坐标为(﹣2,4)


(2)

解:令y=0,则﹣ x2﹣x+3=0,

整理得,x2+4x﹣12=0,

解得x1=﹣6,x2=2,

∴点A(﹣6,0),B(2,0),

如图1,过点D作DE⊥y轴于E,

∵0≤t≤4,

∴△PAD的面积为S=S梯形AOED﹣SAOP﹣SPDE

= ×(2+6)×4﹣ ×6t﹣ ×2×(4﹣t),

=﹣2t+12,

∵k=﹣2<0,

∴S随t的增大而减小,

∴t=4时,S有最小值,最小值为﹣2×4+12=4


(3)

解:如图2,过点D作DF⊥x轴于F,

∵A(﹣6,0),D(﹣2,4),

∴AF=﹣2﹣(﹣6)=4,

∴AF=DF,

∴△ADF是等腰直角三角形,

∴∠ADF=45°,

由二次函数对称性,∠BDF=∠ADF=45°,

∴∠PDA=90°时点P为BD与y轴的交点,

∵OF=OB=2,

∴PO为△BDF的中位线,

∴OP= DF=2,

∴点P的坐标为(0,2),

由勾股定理得,DP= =2

AD= AF=4

= =2,

令x=0,则y=3,

∴点C的坐标为(0,3),OC=3,

= =2,

=

又∵∠PDA=90°,∠COA=90°,

∴Rt△ADP∽Rt△AOC


【解析】(1)根据二次函数的对称轴列式求出b的值,即可得到抛物线解析式,然后整理成顶点式形式,再写出顶点坐标即可;(2)令y=0解关于x的一元二次方程求出点A、B的坐标,过点D作DE⊥y轴于E,然后根据△PAD的面积为S=S梯形AOCE﹣SAOP﹣SPDE , 列式整理,然后利用一次函数的增减性确定出最小值以及t值;(3)过点D作DF⊥x轴于F,根据点A、D的坐标判断出△ADF是等腰直角三角形,然后求出∠ADF=45°,根据二次函数的对称性可得∠BDF=∠ADF=45°,从而求出∠PDA=90°时点P为BD与y轴的交点,然后求出点P的坐标,再利用勾股定理列式求出AD、PD,再根据两边对应成比例夹角相等两三角形相似判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.

(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标;
(3)在(Ⅱ)的条件下,边OA上 的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是(
A.平均数为160
B.中位数为158
C.众数为158
D.方差为20.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1 , S2 , 则|S1﹣S2|=(平方单位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.

(1)求抽取了多少份作品;
(2)此次抽取的作品中等级为B的作品有 , 并补全条形统计图
(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个反比例函数y= (k>1)和y= 在第一象限内的图象如图所示,点P在y= 的图象上,PC⊥x轴于点C,交y= 的图象于点A,PD⊥y轴于点D,交y= 的图象于点B,BE⊥x轴于点E,当点P在y= 图象上运动时,以下结论:①BA与DC始终平行;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;④△OBA的面积等于四边形ACEB的面积.其中一定正确的是(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.

(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.

查看答案和解析>>

同步练习册答案