一袋装有四个上面分别标有数字1、2、3、4,除数字外其它完全相同的小球.摇匀后,甲从中任意抽取1个,记下数字后放回摇匀,乙从中任意抽一个,记下数字,然后把这两个数相加(每次抽取前均看不清小球).
(1)请用列表或树状图的方法求两数和为3的概率;
(2)甲与乙按上述方法做游戏,当两数之和为3时,甲胜,反之乙胜.若甲胜一次得9分,那么乙胜一次得多少分,这个游戏对双方才公平?
【答案】
分析:(1)本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.
(2)根据题意可使用列表法求参与者的概率.
解答:解:(1)列表如下:
和 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 7 |
4 | 5 | 6 | 7 | 8 |
由列表可得:P(数字之和为3)=
(4分);
(2)由(1)知:P(甲胜)=
,P(乙胜)=
;
设乙胜一次得分应为x,才使游戏双方公平,
由
,解得:x=
,
故乙胜一次得分应为
分,这个游戏对双方才公平(8分).
点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.