精英家教网 > 初中数学 > 题目详情
如图所示:点A和点C分别在射线BF和射线BE上运动(点A和点C不与点B重合),BF⊥BE,CD是∠ACB的平分线,AM是△ABC在顶点A处的外角平分线,AM的反向延长线与CD交于点D.试回答下列问题:
(1)若∠ACB=30°,则∠D=
45
45
°,若∠ACB=70°,则∠D=
45
45
°  
(2)设∠ACD=x,用x表示∠MAC的度数,则∠MAC=
(45+x)
(45+x)
°
(3)试猜想,点A和点C在运动过程中,∠D的度数是否发生变化?若变化,请求出变化范围;若不变,请给出证明.
分析:(1)根据角平分线的定义用∠ACB表示出∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠MAC,整理即可得解;
(2)根据(1)可得∠D=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和解答即可;
(3)根据角的平分线定义表示出∠MAC,∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式整理即可得到∠D的大小只与∠ABC有关.
解答:解:(1)∵CD是∠ACB的平分线,
∴∠ACD=
1
2
∠ACB,
∵AM是△ABC在顶点A处的外角平分线,
∴∠MAC=
1
2
∠FAC,
根据三角形外角性质,∠MAC=∠ACD+∠D,
∠FAC=∠ACB+∠ABC,
∴∠ACD+∠D=
1
2
(∠ACB+∠ABC),
1
2
∠ACB+∠D=
1
2
∠ACB+
1
2
∠ABC,
∠D=
1
2
∠ABC,
∵BF⊥BE,
∴∠ABC=90°,
∴∠D=
1
2
×90°=45°,
即∠D的大小与∠ACB无关,等于
1
2
∠ABC,
当∠ACB=30°,∠D=45°,∠ACB=70°,∠D=45°;

(2)根据(1)∠D=45°,
∵∠ACD=x,
∴在△ACD中,∠MAC=∠ACD+∠D=(45+x)°;

(3)不变.理由如下:
∵CD是∠ACB的平分线,
∴∠ACD=
1
2
∠ACB,
∵AM是△ABC在顶点A处的外角平分线,
∴∠MAC=
1
2
∠FAC,
根据三角形外角性质,∠MAC=∠ACD+∠D,
∠FAC=∠ACB+∠ABC,
∴∠ACD+∠D=
1
2
(∠ACB+∠ABC),
1
2
∠ACB+∠D=
1
2
∠ACB+
1
2
∠ABC,
∠D=
1
2
∠ABC,
∵BF⊥BE,
∴∠ABC=90°,
∴∠D=
1
2
×90°=45°.
故答案为:(1)45,45;(2)(45+x).
点评:本题考查了三角形内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,点B和点C分别为∠MAN两边上的点,AB=AC.
(1)按下列语句画出图形:
①AD⊥BC,垂足为D;
②∠BCN的平分线CE与AD的延长线交于点E;
③连接BE.
(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:
 
 
 
 
;并选择其中的一对全等三角形,予以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=-
4
x
和y=
2
x
的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大兴区二模)已知二次函数y=ax2+bx+2,它的图象经过点(1,2).
(1)如果用含a的代数式表示b,那么b=
-a
-a

(2)如图所示,如果该图象与x轴的一个交点为(-1,0).
①求二次函数的表达式,并写出图象的顶点坐标;
②在平面直角坐标系中,如果点P到x轴与y轴的距离相等,则称点P为等距点.求出这个二次函数图象上所有等距点的坐标.
(3)当a取a1,a2时,二次函数图象与x轴正半轴分别交于点M(m,0),点N(n,0).如果点N在点M的右边,且点M和点N都在点(1,0)的右边.试比较a1和a2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,点列A:A0,A1,A2,…和点列B:B0,B1,B2,…位于以A0,和B0为端点的两条射线上,且满足A0A1=A1A2=…=
3
和B0B1=B1B2=…=
2
,现将两条射线重合(端点一致),合并点列A、B形成新的点列C:C0,C1,C2,…(若点列A、B中有两个点重合,则视为点列C中的一个点,如C0,称其为重合点),记l1=C0C1=
2
,l2=C1C2=
3
-
2
,…,由此构成数列L,以下四个命题:
①点列C至少有两个重合点;
②数列L中存在相同的数;
③数列L中数的大小满足:0<li
2
(i=1,2,…);
④数列L中数的一般形式为l=mi
3
+ni
2
(i=1,2,…),且满足mi,ni为整数,|mi+ni|≤1.
其中的真命题是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,梯形ABCD关于y轴对称,点A的坐标为(-3,3),点B的坐标为(-2,0).
(1)写出点C和点D的坐标;
(2)求出梯形ABCD的面积.

查看答案和解析>>

同步练习册答案