精英家教网 > 初中数学 > 题目详情

【题目】近期,我市持续出现雾霾天气,给广大市民的工作和生活造成了严重的影响.为此,雾霾天气的主要成因就成为了某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行了整理,绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:

级别

观点

频数(人数)

A

大气气压低,空气不流动

B

地面灰尘大,空气湿度低

C

汽车尾部排放

D

工厂造成污染

E

其他

调查结果扇形统计图

1)填空:____________

2)求出扇形统计图中E组所占的百分比以及扇形统计图中区域D所对应的扇形圆心角度数;

【答案】(1)40;100;(2)E所占百分比:15%;D所对应圆心角:108°.

【解析】

(1)先利用A算出总人数,再用B的百分比算出m,用总人数减去非C级别的人数算出n.

(2)利用E级别的人数除总人数算出百分比;先算出D级别百分比,再与360°相乘即可算出.

(1)调查总人数:80÷20%=400.

m=400×10%=40,n=400804012060=100.

(2)E所占百分比:60÷400=15%.

D所对应的扇形圆心角度数:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=10°,点POB上.以点P为圆心,OP为半径画弧,交OA于点P1(点P1与点O不重合),连接PP1;再以点P1为圆心,OP为半径画弧,交OB于点P2(点P2与点P不重合),连接P1 P2;再以点P2为圆心,OP为半径画弧,交OA于点P3(点P3与点P1不重合),连接P2 P3;……

请按照上面的要求继续操作并探究:

P3 P2 P4=_____°;按照上面的要求一直画下去,得到点Pn若之后就不能再画出符合要求点Pn+1了,则n=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD边长为3,点EAB边上且BE=1,点PQ分别是边BCCD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是(  )

A. 3 B. 5 C. 4 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,点EFGH分别是边ABBCCDDA的中点,连接EFFGGHHE,若EH=2EF=2,则菱形ABCD的边长为(

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOBAOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB巧分线

1)一个角的平分线   这个角的巧分线;(填不是

2)如图2,若∠MPN=α,且射线PQ是∠MPN巧分线,则∠MPQ=   ;(用含α的代数式表示出所有可能的结果)

【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点PPN位置开始,以每秒10°的速度逆时针旋转,当PQPN180°时停止旋转,旋转的时间为t秒.

3)当t为何值时,射线PM是∠QPN巧分线

4)若射线PM同时绕点P以每秒的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN巧分线t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y关于x的二次函数y=ax2﹣bx+2(a≠0).

(1)当a=﹣2,b=﹣4时,求该函数图象的对称轴及顶点坐标.

(2)在(1)的条件下,Q(m,t)为该函数图象上的一点,若Q关于原点的对称点P也落在该函数图象上,求m的值.

(3)当该函数图象经过点(1,0)时,若A(,y1),B(,y2)是该函数图象上的两点,试比较y1y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在∠AOB的两边截取OA=OBOC=OD,连接ADBC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是__.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样调查过程如下:

收集数据

甲、乙两班的样本数据分别为:

甲班:6 7 9 4 6 7 6 9 6 10

乙班:7 8 9 7 5 7 8 5 9 5

整理和描述数据

规定了四个层次:9分以上(含9分)为优秀”,8-9分(含8分)为良好”,6-8分(含6分)为一般”,6分以下(不含6分)为不合格。按以上层次分布绘制出如下的扇形统计图。

请计算:(1)图1中,不合格层次所占的百分比;

(2)图2中,优秀层次对应的圆心角的度数。

分析数据

对于甲、乙两班的样本数据,请直接回答:

(1)甲班的平均数是7,中位数是_____;乙班的平均数是_____,中位数是7;

(2)从平均数和中位数看,____班整体成绩更好。

解决问题

若甲班50人,乙班40人,通过计算,估计甲、乙两班不合格层次的共有多少人?

查看答案和解析>>

同步练习册答案