精英家教网 > 初中数学 > 题目详情

求抛物线数学公式的顶点坐标.

解:∵a=,b=-,c=-1,
∴-=-===-
∴顶点坐标是:().
分析:根据公式法求顶点坐标,直接代入公式求出即可.
点评:此题主要考查了公式法求二次函数的顶点坐标,熟练记忆公式法:y=ax2+bx+c的顶点坐标为( ),对称轴是x=是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C.
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标;
(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=ax2+bx+c(a≠0)的图象如图;
(1)求此函数的解析式;
(2)用配方法求抛物线的顶点坐标;
(3)根据图象回答,当x为何值时,y>0,当x为何值时,y<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线的函数解析式为y=ax2+bx-3a(b<0),若这条抛物线经过点(0,-3),方程ax2+bx-3a=0的两根为x1,x2,且|x1-x2|=4.
(1)求抛物线的顶点坐标.
(2)已知实数x>0,请证明x+
1
x
≥2,并说明x为何值时才会有x+
1
x
=2.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京二模)如图,已知点M(-
3
,2)和抛物线y=
1
3
x2
,O为直角坐标系的原点.
(1)若直线y=kx+3经过点M,且与x轴交于点A,求∠MAO的度数;
(2)在(1)的条件下,将图中的抛物线向右平移,设平移后的抛物线与y轴交于点E,与直线AM的一个交点记作F,当EF∥x轴时,求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜兴市二模)如图,已知正方形OABC的两个顶点坐标分别是A(2,0),B(2,2).抛物线y=
1
2
x2-mx+
1
2
m2(m≠0)的对称轴交x轴于点P,交反比例函数y=
k
x
(k>0)图象于点Q,连接OQ.
(1)求抛物线的顶点坐标(用含m的代数式表示);
(2)当m=
1
2
k=2时,求证:△OPQ为等腰直角三角形;
(3)设反比例函数y=
k
x
(k>0)图象交正方形OABC的边BC、BA于M、N两点,连接AQ、BQ,有S△ABQ=4S△APQ
①当M为BC边的中点时,抛物线能经过点B吗?为什么?
②连接OM、ON、MN,试分析△OMN有可能为等边三角形吗?若可能,试求m+2k的值;若不可能,请说明理由.

查看答案和解析>>

同步练习册答案