精英家教网 > 初中数学 > 题目详情
(1)数学探究:如图1,三角形ABC的BC边上有一点D,连接AD.三角形ABD与三角形ADC的面积之比为1:2.求BD:CD.
(2)解决问题:如图2,一块四边形的土地上均匀的种植玉米,对角线AC、BD相交于O,收割时三角形DOC区域的玉米产量为12吨.三角形COB区域的玉米产量为18吨,三角形AOB区域的玉米产量为21吨,请估计出三角形AOD区域的玉米产量.
分析:(1)根据的高的三角形的面积的比等于底边的比解答;
(2)设△AOD区域的玉米产量为x吨,根据等高的三角形的面积的比等于底边的比列式表示出
OD
OB
,然后计算即可得解.
解答:解:(1)∵△ABD的底边BD上的高,△ACD的底边CD上的高都是点A到BC的距离,
S△ABD
S△ACD
=
BD
CD
=
1
2

即BD:CD=1:2;

(2)设△AOD区域的玉米产量为x吨,
S△DOC
S△COB
=
OD
OB
S△AOD
S△AOB
=
OD
OB

12
18
=
x
21

解得x=14,
答:△AOD区域的玉米产量是14吨.
点评:本题考查了三角形的面积,主要利用了等高的三角形的面积的比等于底边的比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小明数学成绩优秀,他平时善于总结,并把总结出的结果灵活运用到做题中是他成功的经验之一,例如,总结出“依次连接任意一个四边形各边中点所得四边形(即原四边形的中点四边形)一定是平行四边形”后,他想到曾经做过的这样一道题:如图1,点P是线段AB的中点,分别以AP和BP为边在线段AB的同侧作等边三角形APC和等边三角形BPD,连接AD和BC,他想到了四边形ABDC的中点四边形一定是菱形.于是,他又进一步探究:
如图2,若P是线段AB上任一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,设点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.请你接着往下解决三个问题:
(1)猜想四边形ABCD的中点四边形EFGH的形状,直接回答
 
,不必说明理由;
(2)当点P在线段AB的上方时,如图3,在△APB的外部作△APC和△BPD,其它条件不变,(1)中结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其它条件不变,先补全图4,再判断四边形EFGH的形状,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

探究题
如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中按a次幂从大到小排列的项的系数.规定任何非零数的零次幂为1,如(a+b)0=1.例如,
(a+b)1=a+b展开式中的系数1、1恰好对应图中第二行的数字;
(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;
(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.
(1)请认真观察此图,写出(a+b)4的展开式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

(2)类似地,请你探索并画出(a-b)0,(a-b)1,(a-b)2,(a-b)3的展开式中按a次幂从大到小排列的项的系数对应的三角形.
(3)探究解决问题:已知a+b=3,a2+b2=5,求ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

(1)第一小组的同学发现,在如图1-1的矩形ABCD中,ACBD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程  ▲ 

(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BABC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,判断以ADAFAH为三边能否构成三角形?若能构成,请判断这个三角形的形状,若不能构成,请说明理由.

(4)探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究SAOB'+SBOC'+SCOA'的大小关系.

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏无锡滨湖中学九年级中考二模数学试卷(带解析) 题型:解答题

在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.


【小题1】第一小组的同学发现,在如图1-1的矩形ABCD中,AC、BD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程是                      
【小题2】第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.
【小题3】第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.

【小题4】探究活动结束后,老师给大家留下了一道探究题:
如图4-1,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究SAOB'+SBOC'+SCOA'与的大小关系.

查看答案和解析>>

同步练习册答案