精英家教网 > 初中数学 > 题目详情

如图,下列各图形各围绕哪一点,最低需要旋转多少度之后,能够与它的自身相重合?

答案:
解析:

  解 (1)180°;(2);(3)(旋转中心这里就不再画了).


提示:

  分析 这类题首先要观察它是不是旋转对称图形,肯定之后再看它是由多少个相同的“单位”组成的,例如有n个.那么为使图形重合旋转的最低角度就是


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、
EF
及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①精英家教网
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=
 
(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在如图的平面直角坐标系中,请完成下列各题:
(1)写出图中A,B,C,D各点的坐标;
(2)描出E(1,0),F(-1,3),G(-3,0),H(-1,-3);
(3)顺次连接A,B,C,D各点,再顺次连接E,F,G,H,围成的两个封闭图形分别是什么图形?

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 北师大八年级版 2009-2010学年 第12期 总第168期 北师大版 题型:044

在如图所示的平面直角坐标系中,请完成下列各题:

(1)写出图中ABCD各点坐标;

(2)描出E(10)F(13)G(30)H(1,-3)

(3)顺次连接ABCD各点,再顺次连接EFGH,围成的两个封闭图形分别是什么图形?

查看答案和解析>>

科目:初中数学 来源:同步题 题型:探究题

如图所示,将一些围棋子按照①②③④的方法摆放下去,第n个图形中的围棋子的总数目为s,解答下列问题:
(1)按要求填表:
(2)当n=10时,s=______;
(3)根据上表中的数据把s作为点的纵坐标,n作为点的横坐标,在平面直角坐标系中描出相应的点;
(4)请你猜一猜上述各点会在某函数图象上吗?如果在某一函数的图象上,请你求出s与n之间的关系.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(74):3.7 弧长及扇形的面积(解析版) 题型:解答题

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.

查看答案和解析>>

同步练习册答案