精英家教网 > 初中数学 > 题目详情

中, ,若 的周长为24,则 的取值范围是(  )

(A)     (B)

(C)    (D)

 

【答案】

C

【解析】

试题分析:根据三角形三边的关系可列出不等式组,然后解之即可得出答案.

在△ABC中,AB=AC=x,若△ABC的周长为24,

∴2x<24,

∴x<12,

又因为24-2x-x<x,

解得x>6,

故6<x<12.

故选C.

考点:本题考查了等腰三角形及三角形三边关系

点评:本题考查了等腰三角形及三角形三边关系,属于基础题,关键是根据三角形三边关系列出不等式组.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理解:
(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转
n
360
周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转
 
周;若AB=l,则⊙O自转
 
周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转
 
周;若∠ABC=60°,则⊙O在点B处自转
 
周;
(2)如图3,∠ABC=90°,AB=BC=
1
2
c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转
 
周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

19、在△ABC中,AC=3cm,AD是△ABC中线,若△ABD周长比△ADC的周长大2cm,则BA=
5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.
①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.
②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

某校田径场的跑道内圈设计成如图①形状,每条直道长100米,弯道的设计考虑了人在奔跑时的习惯:运动员在通过弯道时的路径通常离开内侧弧线约0.30米.按此方式在第1道绕行一周的路程约为400米,且每条跑道宽1.20米.(共6条跑道,由内及外分别记1道,2道,…)

(1)第1道的内侧弧线半径约为多少米(精确到0.01米)?
(2)若欲在该径赛场地举行200米短跑决赛,终点设在CD延长线处,起点设在图①所示的右侧弯道处,且外圈跑道的起跑点在内圈跑道起跑点的前方.又如图②所示,第1道、第2道、第3道,起跑线AE、FG、HK中,
EF
GH
弧长相等;
试求
GH
的弧长?并推断图①所示的右侧弯道中,第1道内侧半圆弧长与第6道内侧半圆弧长相差多少米?(结果精确到0.01米)

查看答案和解析>>

科目:初中数学 来源: 题型:

某自行车厂计划每天平均生产n辆自行车,而实际产量与计划产量相比有出入.下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):
星期
实际生产量 +5 -2 -4 +13 -3
(1)用含n的代数式表示本周前三天生产自行车的总数;
(2)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,当n=100时,那么该厂工人这一周的工资总额是多少元?
(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n=100时,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.

查看答案和解析>>

同步练习册答案