精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠B=2∠C,且AD⊥BC于D.求证:CD=AB+BD.

证明:如图,在DC上取DE=BD,
∵AD⊥BC,
∴AB=AE,
∴∠B=∠AEB,
在△ACE中,∠AEB=∠C+∠CAE,
又∵∠B=2∠C,
∴2∠C=∠C+∠CAE,
∴∠C=∠CAE,
∴AE=CE,
∴CD=CE+DE=AB+BD.
分析:在DC上取DE=BD,然后根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AB=AE,根据等边对等角的性质可得∠B=∠AEB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C=∠CAE,再根据等角对等边的性质求出AE=CE,然后即可得证.
点评:本题考查了等腰三角形的判定与性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案