1£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬OÎª×ø±êϵԭµã£¬ADΪµÈÑüÈý½ÇÐÎAOCµ×±ßOCÉϵĸߣ¬Ö±ÏßOAµÄ½âÎöʽΪy=x£¬Å×ÎïÏßy=a£¨x-4£©2+kµÄ¶¥µãΪA£¬ÇÒ¾­¹ý×ø±êÔ­µã£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÓÐÒ»¶¯µãP´ÓµãO³ö·¢£¬ÑØÉäÏßOA·½ÏòÒÔÿÃë$\sqrt{2}$¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔ˶¯£¬Á¬½ÓPD£¬Éè¡÷APDµÄÃæ»ýΪS£¬µãPµÄÔ˶¯Ê±¼äΪtÃ룬ÇóSÓëtµÄ½âÎöʽ£¬²¢Ö±½Óд³ö×Ô±äÁ¿tµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÇé¿öÏ£¬¹ýµãD×÷PDµÄ´¹Ïß½»ÉäÏßACÓÚµãE£¬¹ýµãE×÷OCµÄ´¹Ïß½»Å×ÎïÏßÓÚµãF£¬Îʵ±tΪºÎֵʱ£¬CEµÄ³¤Îª$\sqrt{2}$£¬²¢Çó³ö´ËʱµãFµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃÅ×ÎïÏߵĶԳÆÖáΪx=4£¬¸ù¾ÝµãAÔÚy=xÉÏ¿ÉÇóµÃµãAµÄ×ø±êΪ£¨4£¬4£©£¬½«£¨4£¬4£©£¬£¨0£¬0£©´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃaºÍkµÄÖµ£¬´Ó¶øµÃµ½Å×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±µãPÔÚÏß¶ÎOAÉÏʱ£¬Èçͼ1Ëùʾ£¬¹ýµãP×÷PM¡ÍADÓÚµãM£®ÔÚµÈÑüÈý½ÇÐÎAPMÖУ¬ÀûÓÃÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ¿ÉÇóµÃPM=$\frac{\sqrt{2}}{2}$£¨4$\sqrt{2}$-2t£©£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇóµÃSÓëtµÄ¹ØÏµÊ½£¬Èçͼ2Ëùʾ£¬ÏÈÇóµÃPM=$\frac{\sqrt{2}}{2}$£¨2t-4$\sqrt{2}$£©£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇóµÃSÓëtµÄ¹ØÏµÊ½£»
£¨3£©ÔÚͼ3ÖÐÏÈÖ¤Ã÷¡÷PAD¡Õ¡÷ECD£¬AP=EC=$\sqrt{2}$£¬ÓÉPA=AO-OP¿ÉµÃ£º4$\sqrt{2}$-$\sqrt{2}t$=$\sqrt{2}$£¬½âµÃt=3£¬ÉèEF½»xÖáÓÚµãN£¬ÔÚRt¡÷CENÖУ¬¡ÏECN=45¡ã£¬CE=$\sqrt{2}$£¬ÓÚÊÇCN=1£¬¹Ê´ËON=7£¬½«x=7´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãFµÄ×ø±ê£»Èçͼ4Ëùʾ£ºÏÈÖ¤Ã÷¡÷PAD¡Õ¡÷ECD£¬µÃµ½AP=EC=$\sqrt{2}$ÓÚÊÇÓÐ$\sqrt{2}t$-4$\sqrt{2}$=$\sqrt{2}$£¬½âµÃt=5£¬EF½»xÖáÓÚµãN£¬ÔÚRt¡÷CENÖУ¬¡ÏECN=45¡ã£¬CE=$\sqrt{2}$£¬CN=1£¬¹Ê´ËON=9£¬½«x=9´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãFµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=a£¨x-4£©2+kµÄ¶¥µãΪA£¬
¡àAµÄºá×ø±êΪ4£®
ÓÖ¡ßÖ±ÏßOAµÄ½âÎöʽΪy=x£¬
¡àµ±x=4ʱ£¬y=4£®
¡àµãAµÄ×ø±êΪ£¨4£¬4£©£®
½«£¨4£¬4£©£¬£¨0£¬0£©´úÈëy=a£¨x-4£©2+kµÃ£»a=-$\frac{1}{4}$£¬k=4£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{4}{x}^{2}+2x$£®
£¨2£©µ±µãPÔÚÏß¶ÎOAÉÏʱ£¬Èçͼ1Ëùʾ£¬¹ýµãP×÷PM¡ÍADÓÚµãM£®

¡ßADΪµÈÑüÈý½ÇÐÎAOCµ×±ßOCÉϵĸߣ¬
¡à¡ÏPAD=45¡ã
¡àPM=APsin¡ÏPAD=$\frac{\sqrt{2}}{2}$£¨4$\sqrt{2}$-2t£©£®
¡à${S}_{¡÷APD}=\frac{1}{2}AD•PM$=$\frac{1}{2}¡Á4¡Á\frac{\sqrt{2}}{2}¡Á£¨4\sqrt{2}-\sqrt{2}t£©$=8-2t£¨0¡Üt£¼4£©£®
µ±µãPÔÚÏß¶ÎOAµÄÑÓ³¤ÏßÉÏʱ£¬Èçͼ2Ëùʾ£¬¹ýµãP×÷PM¡ÍADÓÚµãM£®

¡ß¡ÏPAM=45¡ã£¬
¡àPM=APsin¡ÏPAM=$\frac{\sqrt{2}}{2}£¨\sqrt{2}t-4\sqrt{2}£©$£®
¡à${S}_{¡÷APD}=\frac{1}{2}AD•PM$=$\frac{1}{2}¡Á4¡Á\frac{\sqrt{2}}{2}£¨\sqrt{2}t-4\sqrt{2}£©$=2t-8£¨t£¾4£©£®
¡àSÓëtµÄº¯Êý¹ØÏµÊ½ÎªS=$\left\{\begin{array}{l}{8-2t£¨0£¼t£¼4£©}\\{2t-8£¨t£¾4£©}\end{array}\right.$£®
£¨3£©Èçͼ3Ëùʾ£º

¡ßPD¡ÍDE
¡à¡ÏADP=¡ÏEDC£®
ÔÚ¡÷PADºÍ¡÷ECDÖУ¬$\left\{\begin{array}{l}{¡ÏADP=¡ÏEDC}\\{AD=DC}\\{¡ÏPAD=¡ÏECD=45¡ã}\end{array}\right.$£¬
¡à¡÷PAD¡Õ¡÷ECD£®
¡àAP=EC=$\sqrt{2}$£®
¡à4$\sqrt{2}$-$\sqrt{2}t$=$\sqrt{2}$£®
½âµÃ£ºt=3£®
ÉèEF½»xÖáÓÚµãN£¬ÔÚRt¡÷CENÖУ¬¡ÏECN=45¡ã£¬CE=$\sqrt{2}$£¬
¡àCN=CEcos¡ÏECN=$\sqrt{2}¡Á\frac{\sqrt{2}}{2}$=1
¡àON=7£®
½«x=7´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£ºy=$-\frac{1}{4}¡Á{7}^{2}+2¡Á7=\frac{7}{4}$
¡àµãFµÄ×ø±êΪ£¨7£¬$\frac{7}{4}$£©£®
Èçͼ4Ëùʾ£º

¡ßPD¡ÍDE
¡à¡ÏADP=¡ÏEDC£®
ÔÚ¡÷PADºÍ¡÷ECDÖУ¬$\left\{\begin{array}{l}{¡ÏADP=¡ÏEDC}\\{AD=DC}\\{¡ÏPAD=¡ÏECD=135¡ã}\end{array}\right.$£¬
¡à¡÷PAD¡Õ¡÷ECD£®
¡àAP=EC=$\sqrt{2}$£®
¡à$\sqrt{2}t$-4$\sqrt{2}$=$\sqrt{2}$£®
½âµÃ£ºt=5£®
ÉèEF½»xÖáÓÚµãN£¬ÔÚRt¡÷CENÖУ¬¡ÏECN=45¡ã£¬CE=$\sqrt{2}$£¬
¡àCN=CEcos¡ÏECN=$\sqrt{2}¡Á\frac{\sqrt{2}}{2}$=1
¡àON=9£®
½«x=9´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£ºy=$-\frac{1}{4}¡Á{9}^{2}+2¡Á9$=$-\frac{9}{4}$
¡àµãFµÄ×ø±êΪ£¨9£¬-$\frac{9}{4}$£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁËÈ«µÈÈý½ÇÐεÄÐÔÖʺÍÅж¨¡¢ÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½£¬Ö¤µÃ¡÷PAD¡Õ¡÷ECDÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚ½øÐжþ´Î¸ùʽµÄ»¯¼òÓëÔËËãʱ£¬ÎÒÃÇÓÐʱ»áÅöÉÏÈç$\frac{5}{\sqrt{3}}$¡¢$\frac{2}{\sqrt{3}+1}$ÕâÑùµÄʽ×Ó£¬ÆäʵÎÒÃÇ¿ÉÒÔ½«Æä½øÒ»²½»¯¼ò£º
$\frac{5}{\sqrt{3}}$=$\frac{5¡Á\sqrt{3}}{\sqrt{3}¡Á\sqrt{3}}$=$\frac{5\sqrt{3}}{3}$£»
$\frac{2}{\sqrt{3}+1}$=$\frac{2¡Á£¨\sqrt{3}-1£©}{£¨\sqrt{3}+1£©£¨\sqrt{3}-1£©}$=$\sqrt{3}-1$£»
ÒÔÉÏÕâÖÖ»¯¼òµÄ²½Öè½Ð×ö·ÖĸÓÐÀí»¯£®
$\frac{2}{\sqrt{3}+1}$»¹¿ÉÕâÑù»¯¼ò$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{£¨\sqrt{3}£©^{2}-{1}^{2}}{\sqrt{3}+1}$=$\frac{£¨\sqrt{3}+1£©£¨\sqrt{3}-1£©}{\sqrt{3}+1}$=$\sqrt{3}$-1£®
ÇëÑ¡ÔñÊʵ±µÄ·½·¨»¯¼ò£º
£¨1£©$\frac{1}{a\sqrt{b}}$£»£¨2£©$\frac{1}{\sqrt{3}-1}$£»£¨3£©$\frac{2}{\sqrt{5}+\sqrt{3}}$£»£¨4£©$\frac{1}{2\sqrt{5}+5\sqrt{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈôµãA£¨3-m£¬n+2£©¹ØÓÚxÖáµÄ¶Ô³Æµã×ø±êÊÇ£¨-3£¬2£©£¬Ôòm=6£¬n=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ËıßÐÎABEG¡¢GEFH¡¢HFCD¶¼ÊDZ߳¤ÎªaµÄÕý·½ÐΣ¬¡÷AEFÓë¡÷CEAÏàËÆÂð£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èô9x•27x=325£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬Å×ÎïÏßC1£ºy=-£¨x+m£©2+m2£¨m£¾0£©µÄ¶¥µãΪA£¬Å×ÎïÏßC2£ºy=-£¨x-n£©2+n2£¨n£¾m£©µÄ¶¥µãΪB£¬Å×ÎïÏßC2µÄ¶Ô³ÆÖáÓëÅ×ÎïÏßC1ÏཻÓÚµãC£¬Å×ÎïÏßC1µÄ¶Ô³ÆÖáÓëÅ×ÎïÏßC2ÏཻÓÚµãD£®
£¨1£©ÇëÄãÓú¬ÓÐm¡¢nµÄ´úÊýʽ±íʾÏß¶ÎAD¡¢BCµÄ³¤¶È£»
£¨2£©ÈôÅ×ÎïÏßC1ÊÇy=-£¨x+1£©2+1£¬OM=3£¬ÇóÅ×ÎïÏßC2µÄ½âÎöʽºÍ$\frac{AM}{BM}$µÄÖµ£»
£¨3£©ÈôÔÚÅ×ÎïÏßC1ÉÏ´æÔÚµãN£¬Ê¹µÃ¡÷AND¡×¡÷BMC£¬Çóm¡¢nËùÂú×ãµÄ¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬Rt¡÷ABCÖУ¬¡ÏCBA=90¡ã£¬¡ÏCABµÄ½Çƽ·ÖÏßAPºÍ¡ÏACBµÄÍâ½Çƽ·ÖÏßCFÏཻÓÚµãD£¬AD½»CBÓÚP£¬CF½»ABµÄÑÓ³¤ÏßÓÚF£¬¹ýD×÷DE¡ÍCF½»CBµÄÑÓ³¤ÏßÓÚµãG£¬½»ABµÄÑÓ³¤ÏßÓÚµãE£¬Á¬½ÓCE²¢ÑÓ³¤Ïß½»FGÓÚµãH£¬ÔòÏÂÁнáÂÛ£º¢Ù¡ÏCDA=45¡ã£»¢ÚAF-CG=CA£»¢ÛDE=DC£»¢ÜFH=CD+GH£»¢ÝCF=2CD+EG£¬ÆäÖÐÕýÈ·µÄÓТ٢ڢۢݣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬A£¨-3£¬0£©£¬B£¨2£¬0£©£¬CΪyÖáÕý°ëÖáÉÏÒ»µã£¬ÇÒBC=4£®

£¨1£©Çó¡ÏOBCµÄ¶ÈÊý£»
£¨2£©Èçͼ2£¬µãP´ÓµãA³ö·¢£¬ÑØÉäÏßAB·½ÏòÔ˶¯£¬Í¬Ê±µãQÔÚ±ßBCÉÏ´ÓµãBÏòµãCÔ˶¯£¬ÔÚÔ˶¯¹ý³ÌÖУº
¢ÙÈôµãPµÄËÙ¶ÈΪÿÃë2¸öµ¥Î»³¤¶È£¬µãQµÄËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£¬Ô˶¯Ê±¼äΪtÃ룬ÒÑÖª¡÷PQBÊÇÖ±½ÇÈý½ÇÐΣ¬ÇótµÄÖµ£»
¢ÚÈôµãP£¬QµÄÔ˶¯Â·³Ì·Ö±ðÊÇa£¬b£¬ÒÑÖª¡÷PQBÊǵÈÑüÈý½ÇÐÎʱ£¬ÇóaÓëbÂú×ãµÄÊýÁ¿¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÏÂÃæÊÇСÃ÷ͬѧ×ö¹ýµÄÁ½µÀÌ⣬ÇëÏÈÔĶÁ½âÌâ¹ý³Ì£¬È»ºó»Ø´ðËùÌá
³öµÄÎÊÌ⣮
£¨1£©¼ÆË㣺£¨1£©$£¨{-48}£©¡Â36¡Á£¨{-\frac{1}{9}}£©$£»
½â£ºÔ­Ê½=£¨-48£©¡Â£¨-4£©¡­µÚ¢Ù²½
=12 ¡­µÚ¢Ú²½
ÎÊÌ⣺ÉÏÊö½â·¨ÖУ¬µÚ¼¸²½ÓÐ´í£¿¢Ù£¨ÌîÐòºÅ¼´¿É£©£®
±¾ÌâµÄÕýÈ·½â·¨ÊÇ£º-48¡Á$\frac{1}{36}$¡Á£¨-$\frac{1}{9}$£©=$\frac{4}{27}$
£¨2£©-14-£¨1-0.5£©¡Á$\frac{2^2}{3}¡Â[{-2-{{£¨{-3}£©}^2}}]$£®
½â£ºÔ­Ê½=1-$\frac{1}{2}¡Á\frac{4}{9}¡Â£¨{-11}£©$¡­µÚ¢Ù²½
=1-$\frac{2}{9}¡Â£¨{-11}£©$¡­µÚ¢Ú²½
=1-$\frac{2}{99}$¡­µÚ¢Û²½
=$\frac{97}{99}$¡­µÚ¢Ü²½
ÎÊÌ⣺ÉÏÊö½â·¨ÖУ¬µÚ¼¸²½ÓÐ´í£¿¢Ù£¬¢Û£¨ÌîÐòºÅ¼´¿É£©£®
±¾ÌâµÄÕýÈ·½â·¨ÊÇ£ºÔ­Ê½=-1-$\frac{1}{2}$¡Á$\frac{4}{3}$¡Â£¨-11£©=-1-$\frac{1}{2}$¡Á$\frac{4}{3}$¡Á£¨-$\frac{1}{11}$£©=-1+$\frac{2}{33}$=-$\frac{31}{33}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸