·ÖÎö £¨1£©ÓÉÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃÅ×ÎïÏߵĶԳÆÖáΪx=4£¬¸ù¾ÝµãAÔÚy=xÉÏ¿ÉÇóµÃµãAµÄ×ø±êΪ£¨4£¬4£©£¬½«£¨4£¬4£©£¬£¨0£¬0£©´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃaºÍkµÄÖµ£¬´Ó¶øµÃµ½Å×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±µãPÔÚÏß¶ÎOAÉÏʱ£¬Èçͼ1Ëùʾ£¬¹ýµãP×÷PM¡ÍADÓÚµãM£®ÔÚµÈÑüÈý½ÇÐÎAPMÖУ¬ÀûÓÃÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ¿ÉÇóµÃPM=$\frac{\sqrt{2}}{2}$£¨4$\sqrt{2}$-2t£©£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇóµÃSÓëtµÄ¹ØÏµÊ½£¬Èçͼ2Ëùʾ£¬ÏÈÇóµÃPM=$\frac{\sqrt{2}}{2}$£¨2t-4$\sqrt{2}$£©£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇóµÃSÓëtµÄ¹ØÏµÊ½£»
£¨3£©ÔÚͼ3ÖÐÏÈÖ¤Ã÷¡÷PAD¡Õ¡÷ECD£¬AP=EC=$\sqrt{2}$£¬ÓÉPA=AO-OP¿ÉµÃ£º4$\sqrt{2}$-$\sqrt{2}t$=$\sqrt{2}$£¬½âµÃt=3£¬ÉèEF½»xÖáÓÚµãN£¬ÔÚRt¡÷CENÖУ¬¡ÏECN=45¡ã£¬CE=$\sqrt{2}$£¬ÓÚÊÇCN=1£¬¹Ê´ËON=7£¬½«x=7´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãFµÄ×ø±ê£»Èçͼ4Ëùʾ£ºÏÈÖ¤Ã÷¡÷PAD¡Õ¡÷ECD£¬µÃµ½AP=EC=$\sqrt{2}$ÓÚÊÇÓÐ$\sqrt{2}t$-4$\sqrt{2}$=$\sqrt{2}$£¬½âµÃt=5£¬EF½»xÖáÓÚµãN£¬ÔÚRt¡÷CENÖУ¬¡ÏECN=45¡ã£¬CE=$\sqrt{2}$£¬CN=1£¬¹Ê´ËON=9£¬½«x=9´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãFµÄ×ø±ê£®
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=a£¨x-4£©2+kµÄ¶¥µãΪA£¬
¡àAµÄºá×ø±êΪ4£®
ÓÖ¡ßÖ±ÏßOAµÄ½âÎöʽΪy=x£¬
¡àµ±x=4ʱ£¬y=4£®
¡àµãAµÄ×ø±êΪ£¨4£¬4£©£®
½«£¨4£¬4£©£¬£¨0£¬0£©´úÈëy=a£¨x-4£©2+kµÃ£»a=-$\frac{1}{4}$£¬k=4£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{4}{x}^{2}+2x$£®
£¨2£©µ±µãPÔÚÏß¶ÎOAÉÏʱ£¬Èçͼ1Ëùʾ£¬¹ýµãP×÷PM¡ÍADÓÚµãM£®![]()
¡ßADΪµÈÑüÈý½ÇÐÎAOCµ×±ßOCÉϵĸߣ¬
¡à¡ÏPAD=45¡ã
¡àPM=APsin¡ÏPAD=$\frac{\sqrt{2}}{2}$£¨4$\sqrt{2}$-2t£©£®
¡à${S}_{¡÷APD}=\frac{1}{2}AD•PM$=$\frac{1}{2}¡Á4¡Á\frac{\sqrt{2}}{2}¡Á£¨4\sqrt{2}-\sqrt{2}t£©$=8-2t£¨0¡Üt£¼4£©£®
µ±µãPÔÚÏß¶ÎOAµÄÑÓ³¤ÏßÉÏʱ£¬Èçͼ2Ëùʾ£¬¹ýµãP×÷PM¡ÍADÓÚµãM£®![]()
¡ß¡ÏPAM=45¡ã£¬
¡àPM=APsin¡ÏPAM=$\frac{\sqrt{2}}{2}£¨\sqrt{2}t-4\sqrt{2}£©$£®
¡à${S}_{¡÷APD}=\frac{1}{2}AD•PM$=$\frac{1}{2}¡Á4¡Á\frac{\sqrt{2}}{2}£¨\sqrt{2}t-4\sqrt{2}£©$=2t-8£¨t£¾4£©£®
¡àSÓëtµÄº¯Êý¹ØÏµÊ½ÎªS=$\left\{\begin{array}{l}{8-2t£¨0£¼t£¼4£©}\\{2t-8£¨t£¾4£©}\end{array}\right.$£®
£¨3£©Èçͼ3Ëùʾ£º![]()
¡ßPD¡ÍDE
¡à¡ÏADP=¡ÏEDC£®
ÔÚ¡÷PADºÍ¡÷ECDÖУ¬$\left\{\begin{array}{l}{¡ÏADP=¡ÏEDC}\\{AD=DC}\\{¡ÏPAD=¡ÏECD=45¡ã}\end{array}\right.$£¬
¡à¡÷PAD¡Õ¡÷ECD£®
¡àAP=EC=$\sqrt{2}$£®
¡à4$\sqrt{2}$-$\sqrt{2}t$=$\sqrt{2}$£®
½âµÃ£ºt=3£®
ÉèEF½»xÖáÓÚµãN£¬ÔÚRt¡÷CENÖУ¬¡ÏECN=45¡ã£¬CE=$\sqrt{2}$£¬
¡àCN=CEcos¡ÏECN=$\sqrt{2}¡Á\frac{\sqrt{2}}{2}$=1
¡àON=7£®
½«x=7´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£ºy=$-\frac{1}{4}¡Á{7}^{2}+2¡Á7=\frac{7}{4}$
¡àµãFµÄ×ø±êΪ£¨7£¬$\frac{7}{4}$£©£®
Èçͼ4Ëùʾ£º![]()
¡ßPD¡ÍDE
¡à¡ÏADP=¡ÏEDC£®
ÔÚ¡÷PADºÍ¡÷ECDÖУ¬$\left\{\begin{array}{l}{¡ÏADP=¡ÏEDC}\\{AD=DC}\\{¡ÏPAD=¡ÏECD=135¡ã}\end{array}\right.$£¬
¡à¡÷PAD¡Õ¡÷ECD£®
¡àAP=EC=$\sqrt{2}$£®
¡à$\sqrt{2}t$-4$\sqrt{2}$=$\sqrt{2}$£®
½âµÃ£ºt=5£®
ÉèEF½»xÖáÓÚµãN£¬ÔÚRt¡÷CENÖУ¬¡ÏECN=45¡ã£¬CE=$\sqrt{2}$£¬
¡àCN=CEcos¡ÏECN=$\sqrt{2}¡Á\frac{\sqrt{2}}{2}$=1
¡àON=9£®
½«x=9´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£ºy=$-\frac{1}{4}¡Á{9}^{2}+2¡Á9$=$-\frac{9}{4}$
¡àµãFµÄ×ø±êΪ£¨9£¬-$\frac{9}{4}$£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁËÈ«µÈÈý½ÇÐεÄÐÔÖʺÍÅж¨¡¢ÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ¡¢Èý½ÇÐεÄÃæ»ý¹«Ê½£¬Ö¤µÃ¡÷PAD¡Õ¡÷ECDÊǽâÌâµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com