精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=x2﹣2bx﹣3(b为常数,b<0).

(1)抛物线y=x2﹣2bx﹣3总经过一定点,定点坐标为
(2)抛物线的对称轴为直线x=(用含b的代数式表示),位于y轴的
侧.
(3)思考:若点P(﹣2,﹣1)在抛物线y=x2﹣2bx﹣3上,抛物线与反比例函数y= (k>0,x>0)的图象在第一象限内交点的横坐标为a,且满足2<a<3,试确定k的取值范围.
(4)探究:设点A是抛物线上一点,且点A的横坐标为m,以点A为顶点做边长为1的正方形ABCD,AB⊥x轴,点C在点A的右下方,若抛物线与CD边相交于点P(不与D点重合且不在y轴上),点P的纵坐标为﹣3,求b与m之间的函数关系式.

【答案】
(1)(0,﹣3)
(2)b;左
(3)

解:把P(﹣2,﹣1)代入y=x2﹣2bx﹣3得4+4b﹣3=﹣1,解得b=﹣1,

抛物线解析式为y=x2+2x﹣3,

当a=2时,y=x2+2x﹣3=4+4﹣3=5,

当a=3时,y=x2+2x﹣3=9+6﹣3=12,

所以二次函数图象与反比例函数的交点在抛物线上的点(2,5),(3,12)之间,

所以2×5<k<3×12,

即10<k<36


(4)

解:设A(m,m2+2m﹣3),

∵正方形ABCD的边长为1,AB⊥x轴,

∴D(m+1,m2+2m﹣3),

∴P点的坐标为(m+1,﹣3),

把P(m+1,﹣3)代入y=x2﹣2bx﹣3得(m+1)2﹣2b(m+1)﹣3=﹣3,

而m+1≠0,

∴m+1﹣2b=0,

∴b=


【解析】解:(1)当x=0时,y=x2﹣2bx﹣3=﹣3,
所以抛物线经过定点(0,﹣3);(2)抛物线的对称轴为直线x=﹣ =b,
因为b<0,
所以抛物线的对称轴在y轴的左侧;
故答案为(0,﹣3),b,左;
解:(1)抛物线与y轴的交点为定点;当x=0时,y=x2﹣2bx﹣3=﹣3,
所以抛物线经过定点(0,﹣3);(2)利用抛物线的对称轴方程得到抛物线的对称轴为直线x=b,然后利用b的范围确定抛物线的对称轴在y轴的左侧;(3)思考:把P点坐标代入y=x2﹣2bx﹣3得b=﹣1,则抛物线解析式为y=x2+2x﹣3,再分别计算出a=2和a=3所对应的二次函数值,从而确定反比例函数与抛物线的交点的位置,然后利用反比例函数图象上点的坐标特征确定k的范围;(4)探究:设A(m,m2+2m﹣3),利用正方形的性质得D(m+1,m2+2m﹣3),则P点的坐标为(m+1,﹣3),然后把P(m+1,﹣3)代入y=x2﹣2bx﹣3可得到b与m的关系式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,
请根据图中信息解答下列问题:
(1)该校共调查了学生;
(2)请将条形统计图补充完整;
(3)表示等级A的扇形圆心角α的度数是
(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m),且与y轴、直线x=2分别交于点D、E.

(1)求m的值及该抛物线对应的函数关系式;
(2)判断直线BE与抛物线交点的个数;
(3)求证:CD垂直平分BE;
(4)若P是该抛物线上的一个动点,是否存在这样的点P,使得△PBE是等腰直角三角形,且∠PEB=90°?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知平行四边形ABCD的点A0﹣2)、点B3m4m+1)(m≠﹣1),点C62),则对角线BD的最小值是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市中小学全面开展阳光体育活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:

1)这次被调查的学生共有 人.

2)请将统计图2补充完整.

3)统计图1B项目对应的扇形的圆心角是 度.

4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1,3,则下列结论正确的个数有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2 . 已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;② ;③当0<t≤5时, ;④当 秒时,△ABE∽△QBP;其中正确的结论是( )

A.①②③
B.②③
C.①③④
D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知不等式的最小整数解为方程的解,求代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元.

(1)分别求出这两套图书的单价;

(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?

查看答案和解析>>

同步练习册答案