精英家教网 > 初中数学 > 题目详情

如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=1,AB=2.将三角形ABD沿BD翻折,点A恰好落在CD边上的点E处,连接AE,交BD于点F.给出下列5个结论:
①△BCD是等腰三角形;②数学公式;③数学公式;④S△EFB=2S△ADE;⑤AE=数学公式
其中,正确结论的个数为


  1. A.
    2个
  2. B.
    3个
  3. C.
    4个
  4. D.
    5个
B
分析:根据折叠的性质得到∠ADB=∠EDB,∠BED=∠BAC=90°,DE=DA=1,AF=EF,BE=BA=2,再由AD∥BC得到∠ADB=∠CBD,则∠CBD=∠BDC,可判断△BCD是等腰三角形;设CE=x,则CB=x+1,利用勾故故定理可得到关于x的方程(x+1)2=22+x2,解得x=,然后利用梯形的面积公式可计算出S梯形ABCD=(1+)×2=;再在Rt△BCE中,利用余弦的定义可计算出cos∠C===;易证得Rt△ABF∽Rt△DAF,利用相似的性质得到S△ABF:S△DAF=AB2:AD2=4:1,而S△ABF=S△BEF,S△DAF=S△DEF,则有S△EFB=2S△ADE;最后利用面积法可计算出AE的长为
解答:∵三角形ABD沿BD翻折,点A恰好落在CD边上的点E处,
∴∠ADB=∠EDB,∠BED=∠BAC=90°,DE=DA=1,AF=EF,BE=BA=2,
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠CBD=∠BDC,
∴△BCD是等腰三角形,所以①正确;
设CE=x,则CB=x+1,
在Rt△BCE中,BC2=BE2+CE2,即(x+1)2=22+x2,解得x=
∴BC=1+x=
∴S梯形ABCD=(1+)×2=,所以②正确;
在Rt△BCE中,cos∠C===,所以③错误;
∵AF⊥BD,
∴Rt△ABF∽Rt△DAF,
∴S△ABF:S△DAF=AB2:AD2=4:1,
而S△ABF=S△BEF,S△DAF=S△DEF
∴S△EFB=2S△ADE,所以④正确;
∵S四边形ABED=BD•AE=2S△ABD
而BD==
וAE=2××2×1,
∴AE=,所以⑤错误.
故选B.
点评:本题考查了折叠的性质:折叠前后两图形全等.也考查了等腰三角形的判定、直角梯形的性质、相似三角形的判定与性质以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案