精英家教网 > 初中数学 > 题目详情
11.AF初中为了提高学生综合素质,决定开设以下校本课程:A软笔书法;B经典诵读;C钢笔画;D花样跳绳;为了了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行了调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有多少人?
(2)请将条形统计图(2)补充完整;
(3)在平时的花样跳绳的课堂学习中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加全区综合素质展示,求恰好同时选中甲、乙两位同学的概率(用树状图法或表格法解答)

分析 (1)由A是36°,A的人数为10人,即可求得这次被调查的学生总人数;
(2)由(1),可求得C的人数,即可将条形统计图(2)补充完整;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好同时选中甲、乙两位同学的情况,然后利用概率公式求解即可求得答案.

解答 解:(1)∵A是36°,
∴A占36°÷360=10%,
∵A的人数为10人,
∴这次被调查的学生共有:10÷10%=100(人),

(2)如图,C有:100-10-40-20=30(人),


(3)画树状图得:

∵共有6种等可能的结果,甲、乙被选中的有2种情况,
∴恰好同时选中甲、乙两位同学的概率为$\frac{2}{6}$=$\frac{1}{3}$.

点评 本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.在△ABC中,∠C=90°,若AB=2,则AB2+AC2+BC2=8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知,A点的坐标为(4,3),过A点分别作坐标轴的垂线,交x轴和y轴分别于B点和C点,P为线段AB上一个动点(P不与A,B重合),过点P的反比例函数y=$\frac{k}{x}$的图象与AC交于点D.
(1)当△PBC的面积等于4时,求该反比例函数的解析式;
(2)当k为何值时,△PBD的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算题
(1)$\sqrt{0.16}$+$\root{3}{-27}$+$\sqrt{(-2)^{2}}$+(-1)2017
(2)|$\sqrt{2}$-$\sqrt{5}$|-|3-$\sqrt{5}$|+|$\sqrt{2}$-1|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)求证:Rt△ADE与Rt△BEC全等;
(2)求证:△CDE是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:A=($\frac{3}{a+1}$-a+1)÷$\frac{{a}^{2}-4a+4}{a+1}$
(1)化简A;
(2)若a满足方程a2-2a-3=0,求A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读下列材料,然后解答问题:在化简二次根式时,有时会碰到形如$\frac{3}{\sqrt{5}}$、$\frac{2}{\sqrt{3}+1}$这一类式子,通常可以这样进行化简
方法一:
$\frac{3}{\sqrt{5}}$=$\frac{3×\sqrt{5}}{\sqrt{5}×\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$
$\frac{2}{\sqrt{3}+1}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-{1}^{2}}$=$\sqrt{3}$-1.这种化简步骤叫分母有理化.
方法二:
$\frac{2}{\sqrt{3}+1}$还可以用下面方法化简
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-{1}^{2}}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}$=$\sqrt{3}$-1.
请用上面的两种方法化简$\frac{2}{\sqrt{5}+\sqrt{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.按要求完成下列尺规作图(不写作图,保留作图痕迹).

(1)如图①,点A、B、C是平行四边形ABCD的三个顶点,求作平行四边形ABCD;
(2)如图②,点O、P、Q分别是平行四边形EFGH三边EH、EF、FG的中点,求作平行四边形EFGH.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在长为am,宽为bm的一块草坪上修了一条1m宽的笔直小路,则余下草坪的面积可表示为a(b-1)m2,现为增加美感,增加了竖直方向的宽为1m的小路,则此时余下草坪的面积可表示为(a-1)(b-1)m2

查看答案和解析>>

同步练习册答案