精英家教网 > 初中数学 > 题目详情
1.在△ABC中,∠C=90°,若AB=2,则AB2+AC2+BC2=8.

分析 根据勾股定理得到AC2+BC2=AB2=4,计算即可.

解答 解:∵∠C=90°,
由勾股定理得,AC2+BC2=AB2=4,
∴AB2+AC2+BC2=4+4=8,
故答案为:8.

点评 本题考查的是勾股定的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.一个正数的两个平方根分别是2a-5与1-a,b-7的立方根是-2.
求:(1)a,b的值;
(2)a+b的算术平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.简便计算:0.1252016×(-8)2017

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为(  )
A.1B.3C.-1D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知a,b在数轴上的位置如图所示,化简代数式$\sqrt{(a-1)^{2}}$-$\sqrt{(a+b)^{2}}$+|1-b|的结果等于(  )
A.-2aB.-2bC.-2a-bD.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,平面直角坐标系中有一点A(a,b),且满足$\sqrt{a-8}$+(b-4)2=0,将Rt△ABC的直角顶点与A重合并绕直角顶点A旋转,直角边AB与x轴始终交于D,连接OA.
(1)求A点坐标;
(2)若平面内有一点M,使四边形ADOM组成菱形,求D点坐标;
(3)当△ABC绕直角顶点A旋转过程中,若另一直角边AC与x轴交于E,此时$\frac{1}{A{D}^{2}}$+$\frac{1}{A{E}^{2}}$的值是否发生变化?若不变,求$\frac{1}{A{D}^{2}}$+$\frac{1}{A{E}^{2}}$的值是多少?若改变请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.请你举出一个函数实例(指出自变量的取值范围)y=$\frac{1}{x}$ (x≠0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知正方形ABCD中,点E、F分别为BC、CD上的点,连接AE,BF相交于点H,且AE⊥BF.
(1)如图1,连接AC交BF于点G,求证:∠AGF=∠AEB+45°;
(2)如图2,延长BF到点M,连接MC,若∠BMC=45°,求证:AH+BH=BM;
(3)如图3,在(2)的条件下,若点H为BM的三等分点,连接BD,DM,若HE=1,求△BDM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.AF初中为了提高学生综合素质,决定开设以下校本课程:A软笔书法;B经典诵读;C钢笔画;D花样跳绳;为了了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行了调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有多少人?
(2)请将条形统计图(2)补充完整;
(3)在平时的花样跳绳的课堂学习中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加全区综合素质展示,求恰好同时选中甲、乙两位同学的概率(用树状图法或表格法解答)

查看答案和解析>>

同步练习册答案