精英家教网 > 初中数学 > 题目详情
如图,直线y=-
3
x+2与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,⊙A经过点B,O,直线BC交⊙A于点D.
(1)求点D的坐标.
(2)以OC为直径作⊙O',连接AD,直线AD与⊙O'相切吗?为什么?
(3)过O,C,D三点作抛物线,在抛物线的对称轴上是否存在一点P,使线段PO与PD之差的值最大?若存在,请求出这个最大值和点P的坐标,若不存在,请说明理由.
精英家教网
分析:(1)根据题意可求得点B,C的坐标,因为OB是直径,所以可求得∠BDO是直角,所以由三角函数可求得∠OBC等于30°,所以可求得OD的长,根据三角函数可求得点D的坐标;
(2)根据题意,有等量代换求得∠ADO′=90°,即可说明AD是⊙O'切线;
(3)首先要验证此点的存在性,再根据三角形的相似性求解即可.
解答:精英家教网解:(1)由题意知B(0,2),C(
2
3
3
,0),
tan∠OBC=
OC
BO
=
2
3
3
2
=
3
3

∴∠OBC=30°,
∴BD=BOcos30°=
3

过D作DE⊥y轴,垂足为E,DE=BD•sin30°=
3
2
,EO=DEtan30°=
1
2

∴D(
3
2
1
2
)


(2)相切.
连接O'D.
由题意知O'D=OO',
∴∠O'OD=∠O'DO,精英家教网
又∵∠AOD=∠ADO.
∴∠ADO'=∠ADO+∠O'DO=∠AOD+∠O'OD=∠AOO'=90°,
∴AD是⊙O'的切线.

(3)存在.
点P是直线BC与对称轴的交点,
设P'是对称轴上不同于点P的任一点,PO-PD=PC-PD=CD,P'O-P'D=P'C-P'D.
在△P'CD中,显然有P'C-P'D<CD.
所以,存在点P,使PO与PD之差的值最大.
且点P是直线BC与对称轴的交点.
由CO2=CD•CB,得CD=
OC2
CB
=
(
2
3
3
)
2
4
3
3
=
3
3

根据抛物线的对称性知对称轴方程为x=
3
3

所以点P纵坐标为-
3
×
3
3
+2=1

∴P(
3
3
,1).
点评:此题考查了二次函数与园的综合应用,解题时要注意分析二次函数与圆的性质,要注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:直线y=-3x+6与y轴交于点A,与直线y=2x+1交于点B,且直线y=2x+1与x轴交于点C,则△ABC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•双柏县二模)如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求抛物线的解析式;
(2)求抛物线的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求A、B的坐标;
(2)求抛物线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=3x-3交x轴于B,交y轴于C,以OC为边作正方形OCEF,E F交双曲线y=
kx
于点M.且FM=OB.
(1)求k的值.
(2)请你连OM、OG、GM,并求S△OGM
(3)点P是双曲线上一点,点N为x轴上一点,请探究:是否存在点P、N,使以B、C、P、N为顶点组成平行四边形?若存在,求出点P、N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案