精英家教网 > 初中数学 > 题目详情
(1998•南京)已知:如图,菱形ABCD的边长为3,延长AB到点E,使BE=2AB,连接EC并延长交AD的延长线于点F.求AF的长.
分析:首先由菱形的性质:DC∥AE,进而证明:△DFC∽△AFE,再利用相似三角形的性质和已知条件即可求出DF的长,进而求出AF的长.
解答:解:∵四边形ABCD是菱形,
∴DC∥AE,
∴△DFC∽△AFE,
DF
AF
=
DC
AE

∵BE=2AB,AB=3,
∴BE=6,AE=9,
DF
DF+3
=
3
9

∴DF=1.5,
∴AF=AD+DF=3+1.5=4.5.
点评:本题考查了菱形的性质,相似三角形的判定和性质,题目的难度不大,属于基础性题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1998•南京)已知:抛物线y=x2-(m2+5)x+2m2+6.
(1)求证:不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0);
(2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关系式;
(3)设d=10,P(a,b)为抛物线上一点.
①当△ABP是直角三角形时,求b的值;
②当△ABP是锐角三角形、钝角三角形时,分别写出b的取值范围(第②题不要求写出解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知:如图,△ABC内接于⊙O,过圆心O作BC的垂线交⊙O于点P、Q,交AB于点D,QP、CA的延长线交于点E.求证:OA2=OD•OE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知:如图,点P在∠AOB的边OA上.
(1)作图(保留作图痕迹)
①作∠AOB的平分线OM;
②以P为顶点,作∠APQ=∠AOB,PQ交OM于点C;
③过点C作CD⊥OB,垂足为点D.
(2)当∠AOB=30°时,求证:PC=2CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知,如图,⊙O1与⊙O2相交,点P是其中一个交点,点A在⊙O2上,AP的延长线交⊙O1于点B,AO2的延长线交⊙O1于点C、D,交⊙O2于点E,连接PC、PE、PD,且
PC
PD
=
CE
DE
,过A作⊙O1的切线AQ,切点为Q.求证:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

同步练习册答案