精英家教网 > 初中数学 > 题目详情
(1998•南京)已知:如图,点P在∠AOB的边OA上.
(1)作图(保留作图痕迹)
①作∠AOB的平分线OM;
②以P为顶点,作∠APQ=∠AOB,PQ交OM于点C;
③过点C作CD⊥OB,垂足为点D.
(2)当∠AOB=30°时,求证:PC=2CD.
分析:(1)根据角平分线的作法以及作一角等于已知角进而得出图形即可;
(2)利用在直角三角形中30度所对边等于斜边的一半得出即可.
解答:解:(1)如图所示:

(2)过点P作PF⊥OB于点F,
∵∠APC=∠AOB,
∴PC∥OB,
∴∠PCO=∠POC,
∵OM平分∠AOB,
∴∠AOC=∠MOB,
∴∠POC=∠PCO,
∴OP=PC,
∵∠AOB=30°,∠PFO=90°,
∴PF=
1
2
OP,
∵PC∥OB,PF⊥OB,CD⊥BO,
∴PF=DC,
∴DC=
1
2
OP=
1
2
PC,
即PC=2CD.
点评:本题主要考查了角平分线的作法以及作一角等于已知角以及到角平分线的性质等知识,利用平行线的性质以及30度所对边等于斜边的一半得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1998•南京)已知:如图,菱形ABCD的边长为3,延长AB到点E,使BE=2AB,连接EC并延长交AD的延长线于点F.求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知:抛物线y=x2-(m2+5)x+2m2+6.
(1)求证:不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0);
(2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关系式;
(3)设d=10,P(a,b)为抛物线上一点.
①当△ABP是直角三角形时,求b的值;
②当△ABP是锐角三角形、钝角三角形时,分别写出b的取值范围(第②题不要求写出解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知:如图,△ABC内接于⊙O,过圆心O作BC的垂线交⊙O于点P、Q,交AB于点D,QP、CA的延长线交于点E.求证:OA2=OD•OE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•南京)已知,如图,⊙O1与⊙O2相交,点P是其中一个交点,点A在⊙O2上,AP的延长线交⊙O1于点B,AO2的延长线交⊙O1于点C、D,交⊙O2于点E,连接PC、PE、PD,且
PC
PD
=
CE
DE
,过A作⊙O1的切线AQ,切点为Q.求证:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

同步练习册答案