精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F.
(1)试说明△BED≌△CFD;
(2)若∠A=90°,判断四边形AEDF的形状,并说明理由.
分析:(1)根据全等三角形的判定定理AAS来证明△BED≌△CFD;
(2)四边形AEDF是正方形.易证四边形AEDF是矩形,然后结合(1)中的全等三角形△BED≌△CFD的对应边ED=FD来推知四边形AEDF是正方形.
解答:解:(1)∵在△ABC中,AB=AC,
∴∠B=∠C.
∵D为BC边的中点,
∴BD=CD.
在△BED与△CFD中,
∠DEB=∠DFC=90°
∠B=∠C
BD=CD

∴△BED≌△CFD(AAS);

(2)四边形AEDF是正方形.理由如下:
∵∠DEB=90°,∠A=90°,
∴∠DEB=∠A,
∴AF∥ED.
同理,AE∥FD,
∴四边形AEDF是矩形.
又由(1)知,△BED≌△CFD,
∴ED=FD,
∴矩形AEDF是正方形.
点评:本题考查了全等三角形的判定与性质、正方形的判定以及等腰直角三角形.判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案