精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的面积为12BCBC边上的高AD之比为32,矩形EFGH的边EFBC上,点HG分别在边ABAC上,且HG2GF

(1)AD的长;

(2)求矩形EFGH的面积.

【答案】(1)AD4(2)矩形EFGH的面积

【解析】

1)设BC=3x,根据三角形的面积公式列式计算即可;

2)设GF=y,根据矩形的性质得到HGBC,得到△AHG∽△ABC,根据相似三角形的性质列出比例式,计算即可.

(1)BC3x,则AD2x

∵△ABC的面积为12

×3x×2x12

解得,x12x2=﹣2(舍去)

AD的长=2x4

(2)GFy,则HG2y

∵四边形EFGH为矩形,

HGBC

∴△AHG∽△ABC

,即

解得,y

HG2y

则矩形EFGH的面积=×

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):

(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?

(2)一道数学竞赛题,需要讲16分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于三角函数有如下公式:sinα+β)=sinαcosβ+cosαsinβsinαβ)=sinαcosβcosαsinβcosα+β)=cosαcosβsinαsinβcosαβ)=cosαcosβ+sinαsinβtanα+β)=1tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°sin30°+60°)=sin30°cos60°+cos30°sin60°1,利用上述公式计算下列三角函数①sin105°,②tan105°=﹣2,③sin15°,④cos90°0,其中正确的个数有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过DDEAC,垂足为E

1)证明:DE为⊙O的切线;

2)连接OE,若BC=4,求OEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为(  )

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y2x与反比例函数yk0)的图象交于AB两点,且点A的横坐标为4

1)求k的值.

2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CBAD的延长线交于点B,点F是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.

(1)求证:∠ABC=AED;

(2)连接BF,若AD=,AF=6,tanAED=,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+c(a0)上部分点的横坐标x与纵坐标y的对应值如下表:

x

3

2

1

0

1

2

3

y

4

4

0

(1)求该抛物线的表达式;

(2)已知点E(4 y)是该抛物线上的点,点E关于抛物线的对称轴对称的点为点F,求点E和点F的坐标.

查看答案和解析>>

同步练习册答案