精英家教网 > 初中数学 > 题目详情
如图,⊙O1与⊙O2外切于点P,AB是两圆外公切线,A、B为切点,AB与O1O2的延长线交于C点,在AP延精英家教网长线上有一点E,满足
AP
AB
=
AC
AE
,PE交⊙O2于D.
(1)求证:AC⊥EC;
(2)求证:PC=EC;
(3)若AP=4,PD=
9
4
,求
BC
EC
的值.
分析:(1)要证明AC⊥EC,即证明∠ACE=90°,可以根据切线的性质,证明∠APB=90°,再证明△APB∽△ACE即可;
(2)要证明PC=EC,即证明∠3=∠E;
(3)求
BC
EC
的值,可以找到它们与已知线段的关系,通过求PB,证明△PBC∽△APC得出.
解答:精英家教网(1)证明:连接PB,OA,OB,
∵AB为公切线
∴∠1=
1
2
∠O1,∠2=
1
2
∠PO2B
∵O1A∥O2B
∴∠O1+∠PO2B=180°
∴∠1+∠2=90°
∴∠APB=90°
AP
AB
=
AC
AE
,∠1=∠1
∴△APB∽△ACE
∴∠ACE=∠APB=90°
∴AC⊥EC;

(2)证明:∵BP⊥AE于P
∴∠3+∠4=90°
∵AB为公切线
∴O2B⊥AB于B
∴∠2+∠5=90°
又∵O2P=O2B
∴∠4=∠5
∴∠2=∠3
由(1)知△APB∽△ACE
∴∠E=∠2
∴∠3=∠E
∴PC=EC;

(3)解:作内公切线PH,交AB于H,
∴AH=PH=HB
∴∠APB=90°
∴∠DPB=90°
∴DB为⊙O直径
∴DB⊥AB于B
∴Rt△ABD中,BP为斜边AD上的高
∴PB2=AP•DP=4×
9
4

∴PB=3
∵∠DBC=∠APB=90°,∠4=∠5
∴∠DBC+∠5=∠APB+∠C
∴∠PBC=∠APC
又∵∠6=∠6
∴△PBC∽△APC
BC
PC
=
PB
AP
=
3
4

又∵PC=EC
BC
EC
=
3
4
点评:本题综合考查了圆与圆的位置关系、圆心角和圆周角的关系、切线的性质、相似三角形的判定和性质等多个知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知:如图,⊙O1与⊙O2外切于点P,直线AB过点P交⊙O1于A,交⊙O2于B,点C、D分别为⊙O1、⊙O2上的点,且∠ACP=65°,则∠BDP=
65
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙O1于D、⊙O2于E,AC是⊙O1的直径,BC经过M点,连接AD.
(1)求证:AD∥BC;
(2)求证:MF2=AF•BF;
(3)如果⊙O1的直径长为8,tan∠ACB=
34
,求⊙O2的直径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O1与⊙O2相交于C、D两点,⊙O1的割线PAB与DC的延长线交于点P,PN与⊙O2相切于点N,若PB=10,AB=6,则PN=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:⊙O1与⊙O2相交于AB两点,过点A、B的直线分别与⊙O1交于C、E,与⊙O2交于D、F,连接CE、DF.
求证:CE∥DF.

查看答案和解析>>

同步练习册答案