| A. | 1.25 | B. | 0.8 | C. | 0.6 | D. | 0.625 |
分析 作AD⊥BC于D,如图,根据等腰三角形的性质得BD=$\frac{1}{2}$BC=4,然后在Rt△ABD中利用余弦的定义求解.
解答 解:作AD⊥BC于D,如图,![]()
∵AB=AC=5,
∴BD=CD=$\frac{1}{2}$BC=$\frac{1}{2}$×8=4,
在Rt△ABD中,cosB=$\frac{BD}{AB}$=$\frac{4}{5}$.
故选B.
点评 本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解直角三角形要用到的关系:锐角直角的关系:∠A+∠B=90°;三边之间的关系:a2+b2=c2;边角之间的关系:锐角三角函数关系.也考查了等腰三角形的性质.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | $\frac{1}{2}$$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 8$\sqrt{2}$ | B. | 16$\sqrt{2}$ | C. | 8$\sqrt{3}$ | D. | 16$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4+2$\sqrt{2}$ | B. | 4+$\sqrt{10}$ | C. | 6 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com