精英家教网 > 初中数学 > 题目详情

一个三角形的各边长之比为2:5:6,现有另一个三角形和它相似,且这个三角形的最大边为24,则这个三角形的最小边长为________.

8
分析:由一个三角形的各边长之比为2:5:6,现有另一个三角形和它相似,即可得这个三角形的各边长之比为2:5:6,又由这个三角形的最大边为24,即可求得这个三角形的最小边长.
解答:∵一个三角形的各边长之比为2:5:6,现有另一个三角形和它相似,
∴这个三角形的各边长之比为2:5:6,
∴设这个三角形的各边长之比为2x,5x,6x,
∵这个三角形的最大边为24,
∴6x=24,
∴x=4,
∴2x=8,
∴这个三角形的最小边长为8.
故答案为:8.
点评:此题考查了相似三角形的性质.注意掌握相似三角形的对应边成比例是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、一个三角形的各边长之比为2:5:6,现有另一个三角形和它相似,且这个三角形的最大边为24,则这个三角形的最小边长为
8

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料并解答问题:
我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:
精英家教网
(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树
 
棵.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个三角形最短边上的高为8cm,若和它相似的另一个三角形的各边之比为3:4:5,则它的最长边上的高为
4.8
4.8
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=数学公式(m2-1)和c=数学公式(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:

(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树______棵.

查看答案和解析>>

同步练习册答案