精英家教网 > 初中数学 > 题目详情
(2013•江东区模拟)如图,抛物线y=
1
4
x2-m2(m>0)与x轴相交于点A、C,与y轴相交于点P,连结PA、PC,过点A画PC的平行线分别交y轴和抛物线于点B、C1,连结CB并延长交抛物线于点A1,在过点A1画AC1的平行线分别交y轴和抛物线于点B1、C2,连结C1B1并延长交抛物线于点A2,…,依次得到四边形,记四边形AnBnCnBn-1的面积为Sn
(1)求证:四边形ABCP是菱形.
(2)设∠A1B1C1=a,且90°<a<120°,求m的取值范围.
(3)当m=1时,
①填表:
序号 S1 S2 S3 Sn
四边形的面积
②是否存在2个四边形,他们的面积Sp、Sq满足:Sp×Sq=214(p<q)?若存在,求p、q的值;若不存在,请说明理由.
分析:(1)根据AB∥PC,AP∥BC可知四边形ABCP是平行四边形,再由AP=CP即可得出结论;
(2)由AC1∥A1C2,A1C∥A2C1,可知∠A1B1C1=∠ABC,再由四边形ABCP是菱形可知∠ABC=2∠OBC,因为90°<∠A1B1C1<120°故45°<∠OBC<60°,再由B(0,m2),C(2m,0)可知tan∠OBC=
2
m
,故可得出结论;
(3)①根据梯形的面积公式即可得出结论.根据Sp=4(p+1)2,Sq=4(q+1)2即可得出结论.
解答:解:(1)∵AB∥PC,AP∥BC,
∴四边形ABCP是平行四边形,
∵AP=CP,
∴四边形ABCP是菱形;

(2)∵AC1∥A1C2,A1C∥A2C1
∴∠A1B1C1=∠ABC,
∵四边形ABCP是菱形,
∴∠ABC=2∠OBC,
∵90°<∠A1B1C1<120°,
∴45°<∠OBC<60°,
∵B(0,m2),C(2m,0),
∴tan∠OBC=
2
m

∴1<
2
m
3
,解得
2
3
3
<m<2;
(3)①
序号 S1  S2  S3  Sn
四边形的面积  16  36  64  4(n+1)2
②∵Sp=4(p+1)2,Sq=4(q+1)2
∴Sp•Sq=24(p+1)2(q+1)2=214
∴(p+1)2(q+1)2=210
∴(p+1)(q+1)=25
p+1=2
q+1=24
p+1=22
q+1=23

p=1
q=15
p=3
q=7
点评:本题考查的是二次函数综合题,根据题意找出规律是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•江东区模拟)以下四个标志分别表示“绿色食品、回收、节能、节水”,其中属于轴对称图形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江东区模拟)一个不透明的袋子中放有2个红球,2个白球(红球和白球的形状、材质完全相同),从中任意摸出2个球,恰好是一个红球、一个白球的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江东区模拟)如图,△ABC的角平分线AD交BC于点D,点E、F分别在AB、AC上,且EF∥BC,记∠AEF=α,∠ADC=β,∠ACB的补角∠ACG为γ,则α、β、γ的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江东区模拟)已知:如图,点A(-4,0),B(-1,0),将线段AB平移后得到线段CD,点A的对应点C恰好落在y轴上,且四边形ABDC的面积为9,则四边形ABDC的周长是(  )

查看答案和解析>>

同步练习册答案