精英家教网 > 初中数学 > 题目详情
(2013•许昌一模)某次数学课上,老师出示了一道题,如图1,在边长为4等边三角形ABC中,点E在AB上.
AE
AB
=
1
3
.点D在CB的延长线上,且ED=EC,求CD的长.
(1)尝试探究
在图1中,过点E作EF∥BC,交AC于点F.先确定线段,AE与BD的大小关系是
AE=BD
AE=BD
,然后求出CD的长为
16
3
16
3

(2)类比延伸
如图2,在原题条件下,若
AE
AB
=
1
n
(n>0),△ABC边长为m,则CD的长为
mn+m
n
mn+m
n
(用含n,m的代数式表示)试写出解答过程.
分析:(1)易证△AEF是等边三角形,则可以证明△BDE≌△FEC,即可证得EF=BD,则AE=BD可以证得;
(2)与(1)的证明完全相同,证明BD=AE,则求得BD的长,进而得到CD的长.
解答:解:(1)∵EF∥BC,△ABC是等边三角形,
∴△AEF是等边三角形.
∴AE=EF=AF,
∴BE=CF.
∵ED=EC,
∴∠D=∠ECB,
∵EF∥BC,
∴∠ECB=∠FEC,
∴∠FEC=∠D,
∵∠AFE=∠ABC=60°,
∴∠EBD=∠CFE,
在△BDE和△FEC中,
∠D=∠FEC
∠EBD=∠CFE
BE=CF

∴△BDE≌△FEC(AAS),
∴EF=BD
又∵AE=EF,
∴AE=BD.
∴BD=AE=
1
3
AB=
4
3

则CD=BC+BD=4+
4
3
=
16
3



(2)同(1)作EG∥BC,
则BD=AE=
1
n
AB=
m
n

∴CD=BC+BD=m+
m
n
=
mn+m
n

故答案是:AE=BD,
16
3
mn+m
n
点评:本题考查了等边三角形的性质,以及全等三角形的判定与性质,证明BD=AE是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•许昌一模)我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,胡老师一共调查了
20
20
名同学,其中女生共有
11
11
名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,胡老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•许昌一模)如图,钝角三角形ABC的面积为15,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•许昌一模)下列运算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•许昌一模)如图,CE是正六边形ABCDEF的一条对角线,过顶点A作直线l∥CE,则∠1的度数为
30°
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•许昌一模)如图,双曲线y=
k
x
过直角梯形OABC顶点C,与AB边相交于点D,若D是AB的中点,OA=2,∠AOC=60°,则k的值是
3
3

查看答案和解析>>

同步练习册答案