精英家教网 > 初中数学 > 题目详情
求使2n-1为7的倍数的所有正整数n.
因为23=8≡1(mod7),所以对n按模3进行分类讨论.
(1)若n=3k,则
2n-1=(23k-1=8k-1≡1k-1=0(mod7);
(2)若n=3k+1,则
2n-1=2•(23k-1=2•8k-1
≡2•1k-1=1(mod7);
(3)若n=3k+2,则
2n-1=22•(23k-1=4•8k-1
≡4•1k-1=3(mod7).
所以,当且仅当3|n时,2n-1为7的倍数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.
(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,精英家教网其中R、r分别为大圆和小圆的半径;
(2)若L=160m,r=10m,求使图2面积为最大时的θ值.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、求使2n-1为7的倍数的所有正整数n.

查看答案和解析>>

科目:初中数学 来源:2007年初中毕业升学考试(安徽芜湖卷)数学(带解析) 题型:解答题

一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.

(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径;
(2)若L=160m,r=10m,求使图2面积为最大时的θ值.

查看答案和解析>>

科目:初中数学 来源:2007年初中毕业升学考试(安徽芜湖卷)数学(解析版) 题型:解答题

一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.

(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径;

(2)若L=160m,r=10m,求使图2面积为最大时的θ值.

 

查看答案和解析>>

同步练习册答案