以下是根据北京市统计局公布的2010—2013年北京市城镇居民人均可支配收入和农民人均现金收入的数据绘制的统计图的一部分:
根据以上信息,解答下列问题:
(1)2
012年农民人均现金收入比2011年城镇居民人均可支配收入的一半少0.05万元,则2012年农民人
均现金收入是 万元,请根据以上信息补全条形统计图,并标明相应的数据(结果精确到0.1);
(2)在2010—2013年这四年中,北京市城镇居民人均可支配收入和农民人均现金收入相差数额最大的年
份是 年;
(3)①2011—2013年城镇居民人均可支配收入的年平均增长率最接近 ;
A.14% B.11% C.10%
D.9%
②若2014年城镇居民人均可支配收入按①中的年平均增长率增长,请预测2014年的城镇居民人均可
支配收入为 万元(结果精确到0.1)。
科目:初中数学 来源: 题型:
如图,在平面直角坐标系
中,以点
为顶点任作一直角
,使其两边分别与
轴、
轴
的正半轴交于点
、
,连接
,过点
作
于点
,设点
的横坐标为
,
的长为
,
则下列图象中,能表示
与
的函数关系的图象大致是( )
查看答案和解析>>
科目:初中数学 来源: 题型:
定义1:在
中,若顶点
,
,
按逆时针方向排列,则规定它的面积为“有向面积”;若顶点
,
,
按顺时针方向排列,则规定它的面积的相反数为
的“有向面积”。“有
向面积”用
表示,
![]()
![]()
例如图1中,
,图2中,
。
定义2:在平面内任取一个
和点
(点
不在
的三边所在直线上),称有序数组(
,
,
)为点
关于
的“
面积坐标”,记作
,例如图3中,菱形
的边长为2,
,则
,点
关于
的“面积坐标”
为
。
在图3中,我们知道
,利用“有向面积”,我们也可以把上式表示为:
。
应用新知:
(1)如图4,正方形
的边长为1,则
,点
关于
的“面积坐标”是 ;
探究发现:
(2)在平面直角坐标系
中,点
,
.
①若点
是第二象限内任意一点(不在直线
上),设点
关于
的“面积坐标”为
,
试探究
与
之间有怎样的数量关系,并说明理由;
②若点
是第四象限内任意一点,请直接写出点
关于
的“面积坐标”(用
表示);
解决问题:
(3)在(2)的条件下,点
,
,点
在抛物线
上,求当
的值最小时,点
的横坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:等边三角形ABC中,点D、E、F分别为边AB、AC、BC的中点,点M在直线BC上,以点M为旋转中心,将线段MD顺时针旋转60º至
,连接
.
(1)如图1,当点M在点B左侧时,线段
与MF的数量关系是__________;
(2)如图2,当点M在BC边上时,(1)中的结论是否依然成立?如果成立,请利用图2证明,如果不成立,请说明理由;
![]()
![]()
(3)当点M在点C右侧时,请你在图3中画出相应的图形,直接判断(1)中的结论是否依然成立?不必给出证明或说明理由.
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com