精英家教网 > 初中数学 > 题目详情

如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:
①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C△BCD=AB+BC;④△ADM≌△BCD.
正确的有


  1. A.
    ①②
  2. B.
    ①③
  3. C.
    ②③
  4. D.
    ③④
B
分析:根据等腰三角形的性质和三角形内角和定理由AB=AC,∠A=36°可得到∠B=∠ACB=72°,再根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质有∠ACD=∠A=36°,可计算出∠BCD=72°-36°=36°,∠BDC=180°-∠B-∠BCD=72°,则CB=CD,可对①进行判断;根据三角形的角平分线的定义可对②进行判断;根据DA=DC和
三角形周长的定义可得到△BCD的周长C△BCD=DB+DC+BC=DB+DA+BC=AB+BC,则可对③进行判断;由于△ADM为直角三角形,而△BCD为顶角为36°的等腰三角形,
可对④进行判断.
解答:∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∵AC的垂直平分线MN交AB于D,
∴DA=DC,
∴∠ACD=∠A=36°,
∴∠BCD=72°-36°=36°,
∴∠BDC=180°-∠B-∠BCD=72°,
∴CB=CD,
∴△BCD是等腰三角形,所以①正确;
∵∠BCD=36°,∠ACD=36°,
∴CD平分∠ACB,
∴线段CD为△ACB的角平分线,所以②错误;
∵DA=DC,
∴△BCD的周长C△BCD=DB+DC+BC=DB+DA+BC=AB+BC,所以③正确;
∵△ADM为直角三角形,而△BCD为顶角为36°的等腰三角形,
∴△ADM不等全等于△BCD,所以④错误.
故选C.
点评:本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角也相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了线段垂直平分线的性质以及等腰三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,则∠BFD的度数是(  )
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知AB=AC,AD=AE.求证BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,已知AB=AC,AD=AE,BD=EC,则图中有
2
对全等三角形,它们是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步练习册答案