精英家教网 > 初中数学 > 题目详情
精英家教网已知如图△ABC的面积为16,AB=AC=8,D是BC上任意一点,过D作DE⊥AC,DF⊥AB,垂足为E,F,若DF=x,DE=y,y关于x的函数关系式是
 
分析:连接AD,已知DE⊥AC,DF⊥AB,将△ABC的面积转化为△ABD与△ACD的面积和,列方程求解.
解答:精英家教网解:连接AD,
则:S△ABD+S△ACD=S△ABC
即:
1
2
•8x+
1
2
•8y=16
解得:y=-x+4.
点评:此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

探究规律:
已知,如图1,直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点.若A、B、C为三个定点,P为动点,则
(1)△PAB与△CAB的面积大小关系为
 

(2)请你在图1中再画出一个与△ABC面积相等的△DEF,并说明面积相等的理由.
解决问题:
问题1:如图2,在?ABCD中,点P是CD上任意一点,
则S△PAB
 
S△ADP+S△BCP(填写“>”、“<”或“=”).
问题2:如图3,在公路旁边,有一块矩形的土地ABCD,其内部有一个底面为圆形的建筑物,点O为圆心.若要将土地(不含圆形建筑物所占的面积)平均分给两家承包,且分割线都过公路边(AB)上一点P,请你确定点P的位置,并画出分割线,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是一个圆锥与其侧面展开图,已知圆锥的底面半径是2,母线长是6.
(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;
(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年湖南省初中毕业考试模拟数学试卷(四)(解析版) 题型:解答题

如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP. 将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点EF.

 

      (1) 如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在       关系(填“相似”或“全等”),并说明理由;

(2)如图2,设∠ABP=β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出αβ之间的数量关系;若不存在,请说明理由;

(3)如图3,当α=60°时,点EF与点B重合. 已知AB=4,设DP=x,△A1BB1的面

积为S,求S关于x的函数关系式.

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广东佛山卷)数学 题型:填空题

(2011内蒙古赤峰,16,3分)如图,EF是△ABC的中位线,将△AEF 沿AB

方向平移到△EBD的位置, 点D在BC上,已知△AEF的面积为5,则图中阴影部分的面

积为_____________。

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

探究规律:
已知,如图1,直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点.若A、B、C为三个定点,P为动点,则
(1)△PAB与△CAB的面积大小关系为______;
(2)请你在图1中再画出一个与△ABC面积相等的△DEF,并说明面积相等的理由.
解决问题:
问题1:如图2,在?ABCD中,点P是CD上任意一点,
则S△PAB______S△ADP+S△BCP(填写“>”、“<”或“=”).
问题2:如图3,在公路旁边,有一块矩形的土地ABCD,其内部有一个底面为圆形的建筑物,点O为圆心.若要将土地(不含圆形建筑物所占的面积)平均分给两家承包,且分割线都过公路边(AB)上一点P,请你确定点P的位置,并画出分割线,说明理由.

查看答案和解析>>

同步练习册答案