精英家教网 > 初中数学 > 题目详情
10.如图,△ABC中,E、F在AB、AC上,EF∥BC,BF、CE交于点P,延长AP交BC于点D,求证:BD=CD.

分析 根据相似三角形的性质可得$\frac{EG}{BD}$=$\frac{AE}{AB}$=$\frac{EF}{BC}$=$\frac{EP}{PC}$=$\frac{EG}{DC}$,即可得到BD=DC.

解答 证明:∵EF∥BC,
∴△AEG∽△ABD,
∴$\frac{EG}{BD}$=$\frac{AE}{AB}$.
同理可得:
$\frac{AE}{AB}$=$\frac{EF}{BC}$,$\frac{EF}{BC}$=$\frac{EP}{PC}$,$\frac{EP}{PC}$=$\frac{EG}{DC}$,
∴$\frac{EG}{BD}$=$\frac{EG}{DC}$,
∴BD=DC.

点评 本题主要考查的是相似三角形的判定与性质,从中可提炼出一个重要的结论:若EF∥BC,则直线AP平分BC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,一个正n边形纸片被撕掉了一部分,已知它的中心角是40°,那么n=9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知直线l1:y=-x$+\sqrt{2}$k,双曲线C:y=$\frac{{k}^{2}}{{x}^{2}}$,定点F1($\sqrt{2}$k,$\sqrt{2}$k).
(1)若k=$\sqrt{2}$,求直线l1,双曲线C的解析式,定点F的坐标;
(2)在(1)的条件下,在双曲线C上任取一点P(x,y),过P作直线l1的垂线段PM,求$\frac{P{F}_{1}}{PM}$的值;
(3)若k为大于0的任意实数,在双曲线C上任取一点P(x,y),过P作直线l1的垂线段PM,判断$\frac{P{F}_{1}}{PM}$的值是否为定值?若是,求出定值;若不是说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知如图,在△ABC中,∠B=2∠C.
(1)求作:①△ABC的角平分线AD,②线段CD的垂直平分线MN,MN分别交AC、BC于点M、N;(不写作法,保留作图痕迹)
(2)求证:BD=CM.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.菱形中某两个角的和是90°,周长是12,则菱形的面积是(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{5\sqrt{2}}{2}$C.$\frac{7\sqrt{2}}{2}$D.$\frac{9\sqrt{2}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=8,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长度的速度运动,动点Q从点A同时出发,在线段AD上以每秒1个单位长度的速度向终点D运动.设点Q运动的时间为t(秒).

(1)当t为何值时,以P,C,D,Q为顶点的四边形是平行四边形?
(2)分别求出当t为何值时,①PD=PQ,②DQ=PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,网格中的每个四边形都是菱形,如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为37S,如此下去,格点三角形AnBnCn的面积为[(n+1)3-n3]S.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平行四边形ABCD中,∠DAB=60°,AB=2,AD=1,若点A在坐标原点,AB与x轴的夹角为30°,求平行四边形各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.若方程组$\left\{\begin{array}{l}{{y}^{2}-4x-2y+1=0}\\{y=x+m}\end{array}\right.$无实数解,求m的取值范围.

查看答案和解析>>

同步练习册答案