精英家教网 > 初中数学 > 题目详情
已知,等边△ABC边长为6,P为BC边上一点,且BP=4,点E、F分别在边AB、AC上,且∠EPF=60°,设BE=x,CF=y.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)①若四边形AEPF的面积为时,求x的值.
②四边形AEPF的面积是否存在最大值?若存在,请求出面积的最大值及此时x的值;若不存在,请说明理由.
(1) , x的取值范围是;(2) ①4,②存在,x=2,.

试题分析:(1)求出△BEP∽△CPF,得出比例式,代入求出即可;
(2)①过A作AD⊥BC于D,过E作EN⊥BC于N,过F作FM⊥BC于M,求出AD=3,EN=x,CF=y=,FM=,根据S四边形AEPF=S△ABC-S△BEP-S△CFP得出方程,求出x即可;
②四边形AEPF的面积存在最大值,把9-x-化成--2+5,即可得出答案.
试题解析:(1)∵∠EPF=60°
∴∠BPE+∠CPF=120°
∵∠B=60°∴∠BPE+∠BEP=120°
∴∠BEP=∠CPF又∵∠B=∠C=60°
∴△BEP∽△CPF


, x的取值范围是.
(2)①过A作AD⊥BC于D,
过E作EN⊥BC于N,过F作FM⊥BC于M

∵∠B=60°,AB=6,BE=x
∴AD=sin60°×6=, EN=sin60°×x=x
∵∠C=60°,CF=∴FM=sin60°×

.
∴x2-5x+4=0 
∴x1=1(舍去),x2=4




∴当,即x=2时,四边形AEPF的面积存在最大值,最大值是.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图象与轴交于两点,与轴交于点,已知点(-1,0),点C(0,-2).
(1)求抛物线的函数解析式;
(2)试探究的外接圆的圆心位置,并求出圆心坐标;
(3)此抛物线上是否存在点P,使得以P、A、C、B为顶点的四边形为梯形.若存在,请写出所有符合条件的P点坐标;若不存在,请说明理由;
(4)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活成为人们的共识,某企业采用技术革新,节能减排,经分析前5个月二氧化碳排放量y(吨)与月份x(月)之间的函数关系是y=-2x+50.
(1)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么哪月份,该企业获得的月利润最大?最大月利润是多少万元?
(2)受国家政策的鼓励,该企业决定从6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位).
(参考数据:=7.14,=7.21,=7.28,=7.35)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;
(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=-x2+2x+3的顶点坐标是(  )
A.(-1,4) B.(1,3) C.(-1,3) D.(1,4)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

飞机着陆后滑行的距离S(单位:m)与滑行的时间t(单位:S)的函数关系式是,则飞机着陆后滑行       米才能停下来。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某经销商代理销售一种手机,按协议,每卖出一部手机需另交品牌代理费100元,已知该种手机每部进价800元,销售单价为1200元时,每月能卖出100部,市场调查发现,若每部手机每让利50元,则每月可多售出40部.
(1)若每月要获取36000元利润,求让利价
(利润=销售收入-进货成本-品牌代理费)
(2)设让利x元,月利润为y元,写出y与x的函数关系式,并求让利多少元时,月利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

甲、乙两位同学对问题“求代数式的最小值”提出各自的想法.甲说:“可以利用已经学过的完全平方公式,把它配方成,所以代数式的最小值为-2”.乙说:“我也用配方法,但我配成,最小值为2”.你认为(    )
A.甲对B.乙对C.甲、乙都对D.甲乙都不对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=-x2-7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是(  )
A.y1>y2>y3B.y1<y2<y3
C.y2>y3>y1D.y2<y3<y1

查看答案和解析>>

同步练习册答案