精英家教网 > 初中数学 > 题目详情

如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)GH∶GK的值是否变化?证明你的结论;

(2)连结HK,求证:KH∥EF;

(3)设AK=x,请问是否存在x,使△CKH的面积最大,若存在,求x的值,若不存在,请说明理由.

 


(1)解:GH∶GK的值不变,GH∶GK=.                    

证明如下:∵CG⊥AB,∴∠AGC=∠BGC=90°.

∵∠B=30°,∠ACB=90°,∴∠A=∠GCH=60°.

∵∠AGB=∠BGC=90°,

∴∠AGK=∠CGH.

∴△AGK∽△CGH.∴.                             

∵在Rt△ACG中,tan∠A=

∴GH∶GK=.                                             

 


(2)证明:由(1)得,在Rt△KHG中,tan∠GKH=,∴∠GKH=60°.

∵在△EFG中,∠E=∠EGF-∠F=90°-30°=60°,

∴∠GKH=∠E.

∴KH∥EF.                                                       

(3)解:存在x=1,使△CKH的面积最大.理由如下:                 

由(1)得△AGK∽△CGH,∴,∴

在Rt△EFG中,∠EGF =90°,∠F=30°,∴AC=EF=2,

∴CK=AC-AK=2-x.                                             

∴当x=1时,△CKH的最大面积为.                              

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)GH:GK的值是否变化?证明你的结论;
(2)连接HK,求证:KH∥EF;
(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

把一个长方形(如图)划分成两个全等的长方形.若要使每一个小长方形与原长方形相似,问原长方形应满足什么条件?

查看答案和解析>>

科目:初中数学 来源:2013年江苏省无锡市中考数学模拟试卷(一)(解析版) 题型:解答题

如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)GH:GK的值是否变化?证明你的结论;
(2)连接HK,求证:KH∥EF;
(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年广东省中考数学模拟试卷(五)(解析版) 题型:解答题

如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)GH:GK的值是否变化?证明你的结论;
(2)连接HK,求证:KH∥EF;
(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案