精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.

(1)求∠OCA的度数;
(2)若∠COB=3∠AOB,OC=2 , 求图中阴影部分面积(结果保留π和根号)

【答案】
(1)

解:∵四边形ABCD是⊙O的内接四边形,

∴∠ABC+∠D=180°,

∵∠ABC=2∠D,

∴∠D+2∠D=180°,

∴∠D=60°,

∴∠AOC=2∠D=120°,

∵OA=OC,

∴∠OAC=∠OCA=30°;


(2)

解:∵∠COB=3∠AOB,

∴∠AOC=∠AOB+3∠AOB=120°,

∴∠AOB=30°,

∴∠COB=∠AOC﹣∠AOB=90°,

在Rt△OCE中,OC=2

∴OE=OCtan∠OCE=2tan30°=2×=2,

∴SOEC=OEOC=×2×2=2

∴S扇形OBC==3π,

∴S阴影=S扇形OBC﹣SOEC=3π﹣2


【解析】(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;
(2)首先根据∠COB=3∠AOB得到∠AOB=30°,从而得到∠COB为直角,然后利用S阴影=S扇形OBC﹣SOEC求解.
此题考查了圆的综合应用,涉及知识点有圆内接四边形性质,割补法求扇形面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=( )度.
A.70
B.65
C.60
D.55

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.

(1)若DE=BF,求证:四边形AFCE是平行四边形;
(2)若四边形AFCE是菱形,求菱形AFCE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把不等式组的解集表示在数轴上,正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,AB=,∠CBO=45°,在直线BE上求点M,使△BMC与△ODC相似,则点M的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.

(1)如图1,当∠ABC=90°时,△OEF的形状是
(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;
(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且=时,直接写出线段CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:

(1)本次调查共抽查了名学生,两幅统计图中的m= , n=
(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?

查看答案和解析>>

同步练习册答案