精英家教网 > 初中数学 > 题目详情
当m
 
时,直线y=mx+3m+5经过第一、二、三象限.
分析:根据一次函数y=kx+b图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
解答:解:∵直线y=mx+3m+5经过第一、二、三象限.
m>0
3m+5>0

解得,m>0;
故答案是:>0.
点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系中有一点A(
1
2
,-
3
2
),过A点作x轴的平行线l,在l上有一不与A点重合的点B,连接OA,OB.将OA绕O点顺时针方向旋转α°到OA1,OB绕O点逆时针方向旋转α°到OB1
(1)当B点在A点右侧时,如图(1).如果∠AOB=20°,∠A1OB=110°,α=
 
.这时直线AB1与直线A1B有何特殊的位置关系证明你的结论.
(2)如果B点的横坐标为t,△OAB的面积为S,直接写出S关于t的函数关式,并指出t的取值范围.
(3)当α=60时,直线B1A交y轴于D,求以D为顶点且经过A点的抛物线的解析式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形OCED与扇形OAB有公共顶点O,分别以OA、OB所在直线为x轴,y轴建立平面直角坐精英家教网标系.如图所示、正方形两个顶点C、D分别在x轴、y轴正半轴上移动、设OC=x,OA=3,则:
(1)当x=1时,正方形与扇形不重合的面积是
 

(2)当x=
 
时,直线CD与扇形OAB相切,此时切点坐标是
 

(3)当正方形有顶点恰好落在AB上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

菱形OABC在平面直角坐标系中的位置如图所示,OA=5,cosB=数学公式,直线AC交y轴于点D,动点P从A出发,以每秒2个单位的速度沿折线A-B-C向终点C匀速运动,同时,动点Q从D点出发,以每数学公式个单位的速度沿DA向终点A匀速运动,设点P、Q运动的时间为t秒.
(1)求点C的坐标;
(2)求△PCQ的面积S(点P在BC上)与运动时间t的函数关系式,并写出自变量的取值范围;
(3)当t=数学公式时,直线PQ交y轴于F点,求数学公式的值.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(43):2.4 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系中有一点A(),过A点作x轴的平行线l,在l上有一不与A点重合的点B,连接OA,OB.将OA绕O点顺时针方向旋转α°到OA1,OB绕O点逆时针方向旋转α°到OB1
(1)当B点在A点右侧时,如图(1).如果∠AOB=20°,∠A1OB=110°,α=______.这时直线AB1与直线A1B有何特殊的位置关系证明你的结论.
(2)如果B点的横坐标为t,△OAB的面积为S,直接写出S关于t的函数关式,并指出t的取值范围.
(3)当α=60时,直线B1A交y轴于D,求以D为顶点且经过A点的抛物线的解析式.

查看答案和解析>>

同步练习册答案