【题目】在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是 .
【答案】(﹣1,0)
【解析】解:由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上. 设直线AB的解析式为y=kx+b,
∵A(0,1),B(1,2),
∴ ,
解得 .
∴y=x+1,
令y=0,得0=x+1,
解得x=﹣1.
∴点P的坐标是(﹣1,0).
故答案为(﹣1,0).
由三角形两边之差小于第三边可知,当A、B、P三点不共线时,|PA﹣PB|<AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A、B、P三点共线时,|PA﹣PB|=AB,即|PA﹣PB|≤AB,所以本题中当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直线AB的解析式,再令y=0,求出x的值即可.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上).
(1)若以C、E、F为顶点的三角形与以A、B、C为顶点的三角形相似. ①当AC=BC=2时,AD的长为;
②当AC=3,BC=4时,AD的长为;
(2)当点D是AB的中点时,△CEF与△CBA相似吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
A.3:4
B. :2
C. :2
D.2 :
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三边长分别为6cm , 7.5cm , 9cm , △DEF的一边长为4cm , 当△DEF的另两边长是下列哪一组时,这两个三角形相似( )
A.2 cm,3 cm
B.4 cm,5 cm
C.5 cm,6 cm
D.6 cm,7 cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com