精英家教网 > 初中数学 > 题目详情

【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1 , 画出△A1B1C1并直接写出点C1的坐标为
(2)以原点O为位似中心,在第四象限画一个△A2B2C2 , 使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.

【答案】
(1)(2,3)
(2)

如图,△A2B2C2为所作.


【解析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1 , 从而得到△A1B1C1;(2)利用关于原点中心对称的点的特征特征,把A、B、C点的横纵坐标都乘以﹣2得到A2、B2、C2的坐标,然后描点即可得到△A2B2C2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交 于点F,交过点C的切线于点D.

(1)求证:DC=DP;
(2)若∠CAB=30°,当F是 的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3 时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线AC、BD相交成的锐角为60°,若AC=6,BD=8,求ABCD的面积.( ,结果精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据: =1.41, =1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,则下列结论:①b2﹣4ac<0;②a﹣b+c>0;③abc>0;④b=2a中,正确的结论的个数是(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).

(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的解析式为

(1)若抛物线与x轴总有交点,求c的取值范围;
(2)设抛物线与x轴两个交点为A(x1 , 0),B(x2 , 0),且x2>x1 , 若x2﹣x1=5,求c的值;
(3)在(2)的条件下,设抛物线与y轴的交点为C,抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是(
A.AB=AC
B.AD=BD
C.BE⊥AC
D.BE平分∠ABC

查看答案和解析>>

同步练习册答案