精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC≌△ADE,且∠CAD10°∠B∠D25°∠EAB120°,试求∠DFB∠DGB的度数.

【答案】90°65°

【解析】试题分析:由ABC≌△ADE,可得DAE=BAC=EAB-CAD),根据三角形外角性质可得DFB=FAB+B,因为FAB=FAC+CAB,即可求得DFB的度数;根据三角形内角和定理可得DGB=DFB-D,即可得DGB的度数.

试题解析:∵△ABC≌△ADE

∴∠DAE=BAC=EAB-CAD=120°-10°=55°

∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°

∠DGB=∠DFB-∠D=90°-25°=65°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线l:,过点M(1,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1x轴的垂线交直线lN1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M5的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边OA的距离分别为 m, m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象与直线y=x+1相交于点A(﹣1,m)和点B(n,5).
(1)求该二次函数的关系式;
(2)在给定的平面直角坐标系中,画出这两个函数的大致图象;
(3)结合图象直接写出x2+bx+c>x+1时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长分别为2和4的两个全等三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止,设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC的边长为a,B,Cx轴上,Ay轴上.

(1)作ABC关于x轴的对称图形A′B′C′;

(2)求ABC各顶点坐标和A′B′C′各顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则线段AB扫过的图形面积是平方单位(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一艘货船和一艘客船同时从港口A出发,客船每小时比货船多走5海里,客船与货船速度的比为4:3,货船沿东偏南10°方向航行,2小时后货船到达B处,客船到达C处,若此时两船相距50海里.

(1)求两船的速度分别是多少?

(2)求客船航行的方向.

查看答案和解析>>

同步练习册答案