精英家教网 > 初中数学 > 题目详情
(2012•茂名)在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.
(1)随机抽出一张卡片,求抽到数字“3”的概率;
(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)
(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为
34
,问增加了多少张卡片?
分析:(1)由有4张完全相同的卡片正面分别写上数字1,2,3,3,抽到数字“3”的有2种情况,利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两次都是抽到数字“3”的情况,再利用概率公式求解即可求得答案;
(3)首先设增加了x张卡片,即可得方程:
x+2
x+4
=
3
4
,解此方程即可求得答案.
解答:解:(1)∵有4张完全相同的卡片正面分别写上数字1,2,3,3,抽到数字“3”的有2种情况,
∴随机抽出一张卡片,抽到数字“3”的概率为:
2
4
=
1
2


(2)列表得:
第二张

第一张
1 2 3 3
1 (1,1) (1,2) (1,3) (1,3)
2 (2,1) (2,2) (2,3) (2,3)
3 (3,1) (3,2) (3,3) (3,3)
3 (3,1) (3,2) (3,3) (3,3)
∵共有16种等可能的结果,两次都是抽到数字“3”的有4种情况,
∴P(两次都是抽到数字“3”)=
4
16
=
1
4


(3)设增加了x张卡片,则有:
x+2
x+4
=
3
4

解得:x=4,
∴增加了4张卡片.
点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•茂名)如图,在直角坐标系中,线段AB的两个端点的坐标分别为A(-3,0),B(0,4).
(1)画出线段AB先向右平移3个单位,再向下平移4个单位后得到的线段CD,并写出A的对应点D的坐标,B的对应点C的坐标;
(2)连接AD、BC,判断所得图形的形状.(直接回答,不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•茂名)每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.
(1)水果商要把荔枝售价至少定为多少才不会亏本?
(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•茂名)如图所示,抛物线y=ax2+
32
x
+c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止.
(1)求抛物线的解析式和点C的坐标;
(2)在点M、N运动过程中,
①若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;
②若线段MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以O、P、A、C为顶点的四边形是等腰梯形?若存在,请求出t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•茂名)阅读下面材料,然后解答问题:
在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,y2)为端点的线段的中点坐标为(
x1+x2
2
y1+y2
2
).如图,在平面直角坐标系xOy中,双曲线y=
-3
x
(x<0)和y=
k
x
(x>0)的图象关于y轴对称,直线y=
1
2
x
+
5
2
与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.
(1)求a、b、k的值及点C的坐标;
(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.

查看答案和解析>>

同步练习册答案