精英家教网 > 初中数学 > 题目详情
已知:点A(2,-2)和点B(1,-4)在一次函数y=kx+b的图象上,
(1)求k和b的值;
(2)求当x=-3时的函数值.
分析:(1)利用待定系数法把点A(2,-2)和点B(1,-4)代入一次函数y=kx+b中,可以计算出k、b的值;
(2)根据(1)中的计算结果可得一次函数解析式,再把x=-3代入解析式,可算出y的值.
解答:解:(1)∵点A(2,-2)和点B(1,-4)在一次函数y=kx+b的图象上,
2k+b=-2
k+b=-4

解得
k=2
b=-6


(2)由(1)可得函数解析式为:y=2x-6,
把x=-3代入函数解析式得:y=-6-6=-12.
点评:此题主要考查了待定系数法求一次函数解析式,关键是掌握待定系数法求一次函数解析式一般步骤是:
(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;
(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;
(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知动点P在函数y=
1
2x
(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF•BE的值为(  )
A、4
B、2
C、1
D、
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:点P的坐标是(m,-1),且点P关于x轴对称的点的坐标是(-3,2n),则m=
 
,n=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A点的坐标为(2,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

一个有弹性的球从A点落下到地面,弹起后,到B点又落到高为20cm的平台上,再弹起到C点,然后,又落到地面(如图),每次弹起的高度为落下高度的
45
,已知A点离地面比C点离地面高出68cm,那么A′点离地面的高度是
200
200
cm.

查看答案和解析>>

同步练习册答案