精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知动点P在函数y=
1
2x
(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF•BE的值为(  )
A、4
B、2
C、1
D、
1
2
分析:由于P的坐标为(a,
1
2a
),且PN⊥OB,PM⊥OA,那么N的坐标和M点的坐标都可以a表示,那么BN、NF、BN的长度也可以用a表示,接着F点、E点的也可以a表示,然后利用勾股定理可以分别用a表示AF,BE,最后即可求出AF•BE.
解答:精英家教网解:作FG⊥x轴,
∵P的坐标为(a,
1
2a
),且PN⊥OB,PM⊥OA,
∴N的坐标为(0,
1
2a
),M点的坐标为(a,0),
∴BN=1-
1
2a

在直角三角形BNF中,∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形),
∴NF=BN=1-
1
2a

∴F点的坐标为(1-
1
2a
1
2a
),
同理可得出E点的坐标为(a,1-a),
∴AF2=(1-1+
1
2a
2+(
1
2a
2=
1
2a2
,BE2=(a)2+(-a)2=2a2
∴AF2•BE2=
1
2a2
•2a2=1,即AF•BE=1.
故选C.
点评:本题的关键是通过反比例函数上的点P来确定E、F两点的坐标,进而通过坐标系中两点的距离公式得出所求的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•盐都区一模)已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒
5
个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源: 题型:

某校研究性学习小组在研究有关反比例函及其图象性质的问题,时发现了三个重要结论.已知:A是反比例函数y=
kx
(k为非零常数)的图象上的一动点.
(1)如图1过动点A作AM⊥x轴,AN⊥y轴,垂足分别为M、N,求证:矩形OMAN的面积是定值;
(2)如图2,过动点A且与双曲线有唯一公共点A的直线l与x轴交于点C,y轴交于点D,求证:△OCD的面积是定值;
(3)如图3,若过动点A的直线与双曲线交于另一点B,与x轴交于点C,与y轴交于点D.求证:AD=BC.(任选一种证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某校研究性学习小组在研究有关反比例函及其图象性质的问题,时发现了三个重要结论.已知:A是反比例函数数学公式(k为非零常数)的图象上的一动点.
(1)如图1过动点A作AM⊥x轴,AN⊥y轴,垂足分别为M、N,求证:矩形OMAN的面积是定值;
(2)如图2,过动点A且与双曲线有唯一公共点A的直线l与x轴交于点C,y轴交于点D,求证:△OCD的面积是定值;
(3)如图3,若过动点A的直线与双曲线交于另一点B,与x轴交于点C,与y轴交于点D.求证:AD=BC.(任选一种证明)

查看答案和解析>>

科目:初中数学 来源:2012年河南省重点中学中考数学模拟试卷(6月份)(解析版) 题型:解答题

已知二次函数y=ax2+bx-2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;

查看答案和解析>>

科目:初中数学 来源:2005年江苏省镇江中学高中单独招生考试数学试卷(解析版) 题型:解答题

某校研究性学习小组在研究有关反比例函及其图象性质的问题,时发现了三个重要结论.已知:A是反比例函数(k为非零常数)的图象上的一动点.
(1)如图1过动点A作AM⊥x轴,AN⊥y轴,垂足分别为M、N,求证:矩形OMAN的面积是定值;
(2)如图2,过动点A且与双曲线有唯一公共点A的直线l与x轴交于点C,y轴交于点D,求证:△OCD的面积是定值;
(3)如图3,若过动点A的直线与双曲线交于另一点B,与x轴交于点C,与y轴交于点D.求证:AD=BC.(任选一种证明)

查看答案和解析>>

同步练习册答案