精英家教网 > 初中数学 > 题目详情
已知关于x的方程mx+2=2(m-x)的解满足方程|x-
1
2
|=0,则m的值为(  )
A、
1
2
B、2
C、
3
2
D、3
分析:本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.
解答:解:∵|x-
1
2
|=0,
∴x=
1
2

把x代入方程mx+2=2(m-x)得:
1
2
m+2=2(m-
1
2
),
解之得:m=2;
故选B.
点评:此类题型的特点是,有2个方程,一个含有字母系数,一个是不含字母系数的方程,2方程同解,求字母系数的值.一般方法是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程mx+2=2(m-x)的解满足|x-
12
|-1=0,则m的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知关于x的方程mx+n=0的解是x=-2,则直线y=mx+n与x轴的交点坐标是
(-2,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

4、已知关于x的方程mx+3=2(x-m)的解满足|x-2|-3=0,则m的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程mx+3=x与方程5-2x=1的解相同,求m 的值.

查看答案和解析>>

同步练习册答案