精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠ADE60°DF平分∠ADE∠130°,求证:DF∥BE

证明:∵DF平分∠ADE(已知)

__________ADE

∵∠ADE60°(已知)

∴_________________30°( )

∵∠130°(已知)

∴____________________( )

∴____________________( )

【答案】∠FDE 角平分线的定义 ∠FDE 等量代换 ∠1=∠FDE

等量代换 DF∥BE 内错角相等,两直线平行

【解析】试题分析由角平分线的定义得出∠EDF=ADE=30°,得出∠1=EDF即可得出结论.

试题解析DF平分∠ADE(已知)

∴∠EDF=ADE.(角平分线定义)

∵∠ADE=60°,(已知)

∴∠EDF=30°.(等量代换

∵∠1=30°,(已知)

∴∠1=EDF(等量代换)

DFBE(内错角相等两直线平行)

故答案为:∠EDF角平分线定义EDF等量代换1=EDF等量代换DFBE内错角相等两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为(

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=50°

(1)若点I是∠ABC,ACB的角平分线的交点,则∠BIC= °.

(2)若点D是∠ABC,ACB的外角平分线的交点,则∠BDC= °.

(3)若点E是∠ABC,ACG的平分线的交点,探索∠BEC与∠BAC的数量关系,并说明理由.

(4)在(3)的条件下,若CEAB,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为6B是数轴上一点,且AB10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为tt0)秒.

1)写出数轴上点B表示的数   ;当t3时,OP   

2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点PR同时出发,问点R运动多少秒时追上点P

3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点PR同时出发,问点R运动多少秒时PR相距2个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)根据题意,填写下表:

重量(千克)
费用(元)

0.5

1

3

4

甲公司

22

67

乙公司

11

51


(2)请分别写出甲乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(3)小明应选择哪家快递公司更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.
(1)当m=4时,求n的值;
(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;
(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠B=90°,ABCD,MBC边上的一点,且AM平分∠BAD,DM平分∠ADC.

求证:(1)AMDM;

(2)MBC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的顶点分别为A(2,4),B(﹣2,2),C(3,1).

(1)作出ABC关于x轴对称的图形DEF写出顶点DEF的坐标

(2)如果点H(3m﹣1,n﹣6)与点H′(2n+7,3m﹣9)关于y轴对称mn的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,D,E三点共线,C,B,F三点共线,AB=CD,AD=CB,DE=BF,那么BE与DF之间有什么数量关系?请说明理由.

查看答案和解析>>

同步练习册答案