精英家教网 > 初中数学 > 题目详情

已知关于x的方程(m-1)x2-2mx+m=0有两个不相等的实数根x1、x2
(1)求m的取值范围;
(2)若(x1-x22=8,求m的值.

解:(1)∵a=m-1,b=-2m,c=m,
而方程有两个不相等的实数根,
∴△=b2-4ac=4m2-4(m-1)m=4m>0,
∴m>0(m≠1);
(2)∵
∴(x1-x22=(x1+x22-4x1x2==8,
解得:m1=2,m2=
经检验2和都是方程的解.
分析:(1)根据一元二次方程的根的判别式△>0时,方程有两个不相等的实数根,建立关于m的不等式,然后求出m的取值范围;
(2)把根与系数的关系式代入(x1-x22=8即(x1-x22=(x1+x22-4x1x2=8,代入即可得到一个关于m的方程,求得m的值.
点评:总结:1、一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根
(3)△<0?方程没有实数根.
2、若一元二次方程有实根,则根与系数的关系为:x1+x2=,x1•x2=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并直接写出以这两根为直角边的直角三角形外接圆半径的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程m(x-1)=4x-m的解是-4,求m2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程4x-3m=2的解是x=m,则m=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程|x|=ax-a有正根且没有负根,则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程3x2-4x•sinα+2(1-cosα)=0有两个不相等的实数根,α为锐角,那么α的取值范围是
 

查看答案和解析>>

同步练习册答案